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Modern neuroscience has entered the era of high dimensional data. It is often the case that we can
simultaneously record N = O(100) to O(1000) neurons but only for a limited number P trials per condition,
which may be the same order of magnitude as the dimensionality of data (N). This high dimensional data
scenario carries with it the curse of dimensionality; in essence it is exceedingly di�cult to analyze such
limited amounts of high dimensional data by estimating large probabilistic models.

We develop analytical methods and algorithms to combat this curse for a wide variety of (Bayesian)
regression problems. For example, consider the problem of estimating functional connectivity between
neurons. This is e↵ectively a high dimensional regression problem in which an unknown pattern of N
synaptic weights onto a noisy neuron are to be inferred, based on P measured inputs and outputs to the
neuron, and where we may have an appropriate prior over synaptic weights.

Maximum likelihood (ML) or maximum a posteriori (MAP) estimation are almost ubiquitous methods
for solving this regression problem. We consider instead the optimal tractable estimator; this calculation
involves optimizing an arbitrary loss function over the unknown synaptic weights. We used methods from
statistical mechanics to find this optimal loss. Intriguingly, we find the optimal function is neither ML,
nor MAP, but involves a smoothed version of the log-likelihood function and the prior where the degree
of smoothing depends on the ratio P/N. The optimal loss function enjoys substantial improvements in
squared error relative to ML and MAP.

These results indicate that widely cherished Bayesian procedures for analyzing data must be modified
in the high dimensional setting. In essence, they suggest we should strive not just to be Bayesians, but
smooth Bayesians.

1 Additional Detail

Consider the following Bayesian regression problem in which we must estimate an unknown vector w0 (i.e.
a vector of N synaptic weights). The weights obey,
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are (neuron) outputs, X is our design matrix of (neural) inputs, ✏
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is noise drawn from a distri-
bution f(✏), and i indexes the P sample data points. Furthermore the weights, or components of w0 are
drawn i.i.d. from a prior distribution R(w).

We consider the class of M-estimators of the form
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where ⇢ is the loss function and � is a regularizer. If ⇢ were the logarithm of the distribution of the noise
✏, and � were the logarithm of the prior R, then ŵ would be the MAP estimate.

Our goal is to find the optimal M-estimator, or the optimal functions ⇢

opt

and �

opt

that on average
minimize the squared error kŵ � w

0k2. Note that the posterior mean of w given the data is the absolute
optimal minimum mean squared error estimator in Bayesian regression, but the posterior mean is not an
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M-estimator; its computation requires a high dimensional integral over the vector w that is in general
intractable. Thus we limit ourselves to the class of M-estimators, whose minimization is much more
computationally tractable.

We develop a method, based on the replica theory of the statistical mechanics of disordered systems, to
compute the optimal ⇢ and �. Our results thus provide a new derivation as well as an important extension
of El, Karoui et. al. 2013, who only considered a heuristic derivation of the ML scenario, and did not
consider the Bayesian scenario. We find that the optimal ⇢
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have the analytic forms,
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+ â ln(⇠(x))

◆⇤

� x

2

2

�
(4)

Where ⇣

q̂0 = f ⇤ �
q̂0 defines a convolution between the noise and a gaussian � of variance q0. Similarly
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⇤ denotes the Fenchel conjugate operator g(x)⇤ = sup
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[xy � g(y)] . Finally â and q̂0

are a pair of scalars that are are the solutions to the constrained optimization minimizing q0 s.t. aIq0 =
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Thus ⇢
opt

is closely related to the log likelihood term log f and �

opt

is closely related to the log prior
logR, however they are systematically modified and smoothed in a manner that depends on the ratio
of the dimensionality of the problem (N) to the amount of data (P). In essence, higher dimensionality
necessitates more smoothing.

We expect these optimal estimators will have an important, widespread application to data analysis in
neuroscience, as high dimensional Bayesian regression is a fundamental data analytic method relevant for
modern neuroscientific datasets, and our results indicate that exceedingly common approaches to do this,
like ML and MAP, are suboptimal.
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