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Two studies in this issue of Neuron challenge widely held assumptions about the role of positive feedback in
recurrent neuronal networks. Goldman shows that such feedback is not necessary for memory maintenance
in a neural integrator, and Murphy and Miller show that it is not necessary for amplification of orientation
patterns in V1. Both suggest that seemingly recurrent networks can be feedforward in disguise.
It’s a poor sort of memory that only

works backwards.

—The White Queen in Lewis Carroll’s

Through the Looking Glass

An enduring puzzle in the systems

neuroscience of memory arises from the

existence of a wide gap separating two

distinct timescales: (1) the biophysical

timescale of milliseconds, over which

single neurons can remember their inputs,

and (2) the cognitive timescale of

seconds, over which our short-term

memory operates. How can such rapidly

forgetful neurons mediate short-term

memory? If one only wants to remember

discrete items, such as a person’s name,

then point attractor networks (Hopfield,

1982) can do the job. However, such

networks cannot remember a continuous

stream of analog information, something

that is critical for a wide range of tasks—

from simple ones, like holding our eyes

still, to far more complicated ones, like

parsing a spoken sentence.

The difficulty of remembering a stream

of analog information can already be

seen in the problem of neural integration.

An integrator is a simple memory device

that accumulates and remembers its total

input over time. For example, an oculo-

motor integrator localized in the brainstem

and cerebellum maintains a memory of

eye position by integrating eye velocity

signals (Robinson, 1989). A hallmark char-

acteristic of any neural integrator is that

a brief pulse of input leads to a graded

pattern of persistent activity that long

outlasts the pulse. For example, an effer-
ence copy of a brief eye movement

command provided to the oculomotor

integrator yields a persistent activity

pattern that constitutes a memory trace

of the new eye position, a trace that can

be used to stabilize the eye. How can

such graded activity be precisely main-

tained by forgetful neurons? One oft

proposed theoretical solution makes use

of the recurrent connectivity that exists

among excitatory neurons (see e.g.,

Seung, 1996). Such connections mediate

positive feedback, which prevents the

decay of neuronal activity and allows

neurons to persistently fire even in the

absence of input. However, any solution

that relies on positive feedback to main-

tain memory suffers from a severe fine-

tuning problem: the amount of positive

feedback must exactly balance the

intrinsic decay tendencies of individual

neurons. Too much feedback leads to

runaway growth of neural activity, while

too little leads to decay. In either case,

memory of the total input is rapidly lost.

In this issue of Neuron, Goldman (2009)

proposes an alternate mechanism for

memory maintenance that does not rely

on positive feedback, thereby elegantly

circumventing the fine-tuning problem

suffered by prior models of neural integra-

tion. Goldman begins by considering a

purely feedforward chain of neurons (Fig-

ure 1A). An input pulse to the first neuron

triggers a wave of feedforward activity

that lasts up to a time proportional to the

length of the chain, or about Nt, where N

is the number of neurons in the chain and

t is the intrinsic decay time constant of
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an individual neuron. Although each indi-

vidual neuron responds transiently to the

pulse (Figure 1B), the summed activity of

the network resembles graded persistent

activity whose magnitude is proportional

to the pulse size. Thus, the network acts

like an integrator, for up to N times the

intrinsic decay time of single neurons.

More generally, Goldman suggests that

each node in Figure 1A could represent

not a single neuron, but a group of neurons

that act together as one stage of an N-

stage feedforward network.

Of course one might object that purely

feedforward stages of connectivity, as in

Figure 1A, are at odds with the observation

of strongly recurrent connectivity in many

brain regions. However, Goldman and

two other studies reviewed below all

show that what looks like recurrent

connectivity may not be: networks that

appear, anatomically, to be strongly recur-

rent may nevertheless functionally behave

like purely feedforward networks. We

show a concrete example in Figures 1C–

1F. The key idea is that instead of single

neurons driving other single neurons in

a feedforward chain as in Figure 1A, whole

population patterns of activity can drive

other population patterns of activity in

a feedforward chain, without any activity

pattern exerting positive feedback on it-

self (see Figure 1E, top.) This situation

can occur in a fully recurrent network, as

in Figure 1C. Such networks yield long

transient dynamical patterns of activity in

response to a pulse, which can, through

a weighted sum, again yield stable persis-

tent activity that lasts a time of about Nt.
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Figure 1. Functionally Feedforward Dynamics Hidden in a Recurrent Architecture
(A) A purely feedforward network of four neurons.
(B) The response of this network to a pulse of input to neuron 1. Each neuron is a leaky integrator with an intrinsic time constant of 50 ms. Although the firing rate
of the first neuron decays on this timescale, it excites a transient wave of feedforward activity that lasts more than 200 ms, or four times the intrinsic neuronal
decay time.
(C) A recurrent network with a 4 3 4 connectivity matrix, W. The network is shown on the left with different colors for the four possible weights: 3⁄4 (red), 1⁄4 (orange),
�1⁄4 (light blue), �3⁄4 (dark blue).
(D) An equal pulse of input to all four neurons in panel (C) yields a complex, transient pattern of activity across neurons that again lasts more than four times the
intrinsic neuronal timescale. (Negative firing rates can be interpreted as firing below spontaneous levels.)
(E) The long transient arises because the network is a feedforward network in disguise: for i = 1, 2, and 3, W maps pi to pi+1 (Wpi = pi+1), and, although not shown in
the figure, W maps p4 to zero (Wp4 = 0). Each vector pi is a pattern of activity across neurons shown on top (red neurons are active, blue suppressed).
(F) The same neuronal response in panel (D) can be plotted in terms of the amplitude of each activity pattern pi. Initially, all neurons have the same level of
excitation, and only pattern p1 is present. However, over time activity is transferred in a feedforward wave from pattern to pattern, recovering dynamics identical
to that of the purely feedforward network (note in particular that the traces in panels [B] and [F] are identical).
Is there an advantage to purely feedfor-

ward networks compared to purely feed-

back ones? One key issue, as mentioned

above, is robustness to perturbations in

connectivity. Goldman shows that func-

tionally feedforward networks can tolerate

large percentage changes in connectivity

that would otherwise lead to instabilities in

purely feedback networks. But also, func-

tionally feedforward networks provide rich

transient dynamical responses to inputs

that could serve as a basis for more general

temporal processing beyond simply the

maintenance of persistent activity. Indeed

a wide variety of cortical and hippocampal

areas reveal rich dynamical patterns of

activity during working memory tasks,

rather thansimple, staticpatternsofpersis-

tent activity (see the Introduction of Gold-

man [2009] for references). In particular,

Goldman examines recordings from

monkey prefrontal cortex during a working

memory task (Batuev, 1994) and shows

that functionally feedforward networks

can fit the diversity of neuronal responses,

whereas purely feedback networks, with

single modes of activity, cannot.
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An important point not touched upon in

Goldman (2009) is the sensitivity of inte-

gration to noise. Indeed, the consideration

of noise reveals an important limit on

memory. For example, in the simple case

of a feedforward chain of neurons as in

Figure 1A, suppose that in addition to the

input pulse of signal to neuron 1, each

neuron in the chain also receives contin-

uous background input, which we take to

be noise. The network will integrate not

only the signal, but also the noise. Since

a neuron at a certain depth in the chain

receives noise from all upstream neurons,

the strength of noise accumulates linearly

down the chain. The strength of the signal,

however, stays constant as it propagates

down the chain, since it enters only at the

first neuron. Thus, the signal-to-noise ratio

(SNR) decays inversely with time. When

the SNR reaches 1, the network has effec-

tively lost any memory about the size of the

input pulse. Thus, the network’s memory

is limited by t times the input SNR.

How can we get around the problem of

noise?Theanswercanbe found ina recent

study by Ganguli et al. (2008). In that study,
sevier Inc.
the authors investigated the ability of

general networks, in a class closely related

to that considered by Goldman, to

remember a sequential stream of analog

input in the presence of noise. They found

that networks with purely feedback inter-

actions are not able to remember their

inputs beyond a time governed by the

input SNR, no matter how large they are.

Thus, (hidden) feedforward structure is

necessary if a network’s memory of past

inputs is to last up to a time proportional

to its size. However feedforward structure

alone is not enough; Ganguli et al. showed

that amplification between feedforward

stages is also required to combat noise.

This amplification cannot be achieved by

amplifying the signals carried by single

neurons since neurons have a limited

range of firing rates. However, if the

number of neurons in each stage grows

sufficiently rapidly, one can achieve

distributed signal amplification without

saturating individual neurons. With such

amplification, the memory of a network

can grow indefinitely with the number

of feedforward stages. Since noise
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accumulates linearly in the number of

stages, the number of neurons per stage

must grow at least as fast to preserve the

input SNR. This places a limit on the dura-

tion of time over which any network of N

neurons can remember its input. Indeed,

Ganguli et al. (2008) prove mathematically

that no network of N neurons can

remember an input stream for a time

longer than
ffiffiffiffi

N
p

t, in the presence of both

strong noise and nonlinear saturation,

and any network that approaches this limit

must employ a (possibly hidden) distrib-

uted feedforward scheme.

Functionally feedforward structures

solve several theoretical puzzles, but are

they used in the brain? Interestingly,

evidence that they are can be found in an

elegant study by Murphy and Miller

(2009), also in this issue of Neuron. These

authors were motivated by a very different

puzzle than temporal memory, one

involving selective amplification of cortical

activity patterns in V1. As is well known, an

oriented stimulus yields a sensory-evoked

pattern of activity across V1 in which cells

with orientation preferences similar to that

of the stimulus have high activity while the

rest have low activity. Kenet et al. (2003)

examined spontaneous V1 activity in an

anesthetized cat in the absence of a stim-

ulus and found that this activity resembled

sensory-evoked patterns more often than

chance. One possible explanation for the

resemblance between spontaneous and

evoked activity is the selective amplifica-

tion of orientation maps from unstructured

inputs through positive feedback loops

(Goldberg et al., 2004). Basically, neurons

with similar orientation preferences excite

each other, leading to the amplification of

orientation map-like activity. However,

networks that amplify inputs through posi-

tive feedback do so at a price: they

respond slowly to their inputs. Intuitively
this is because activity must propagate

multiple times through the recurrent loops

in order to be amplified, and such propa-

gation takes time. But significant slowing

down does not seem to occur in the data

in Kenet et al. (2003); spontaneous activity

in V1 fluctuates on a timescale compa-

rable to its inputs. Of course, strong and

rapid amplification could occur in one

feedforward step, but where could such

a step exist in the V1 recurrent circuitry?

Murphy and Miller propose that such

a feedforward step would naturally be

hidden in a ubiquitous feature of cortical

circuitry: strongly excitatory circuits

balanced by equally strong inhibition. For

example, any fluctuation that tilts the

balance in favor of excitation would tran-

siently drive both excitatory and inhibitory

populations, but eventually increased inhi-

bition would restore the balance. This

yields a hidden feedforward single-stage

amplifier in which small differential

patterns of excitatory and inhibitory firing

drive large common patterns of firing.

Although the authors do not rule out purely

feedback mechanisms of sensory map

amplification in V1, they argue convinc-

ingly that transient amplification through

this feedforward mechanism should play

an important role alongside traditional

feedback mechanisms.

Through a remarkable and simulta-

neous convergence of ideas, the three

studies discussed in this preview have

highlighted the importance of hidden

feedforward connectivity in recurrent

architectures, from the three different

but related perspectives of neuronal inte-

gration, sequence memory, and sensory

amplification. Perhaps the most fasci-

nating test of these ideas would be the

direct observation of such feedforward

connectivity hidden within the oncoming

rush of connectomics data. More gener-
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ally, beyond the realm of neuroscience,

dynamical systems governed by hidden

feedforward structures are known in the

physics and mathematics literature as

nonnormal dynamical systems. Due to

their rich and long-lasting transient

behavior, models of nonnormal dynamics

have been invoked to explain many varied

and subtle aspects of our natural world,

from the transition to turbulence in fluid

mechanics to population growth patterns

in ecology (Trefethen and Embree, 2005).

The studies discussed here are among

the first to connect the general theory of

nonnormal dynamics to the field of neuro-

science and, as such, provide intriguing

hypotheses for how network connectivity

may yield rich emergent dynamics

capable of bridging the gap between

biophysics and cognition.
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