Learning hierarchical category structure in deep neural networks

Andrew M. Saxe (asaxe@stanford.edu)
Department of Electrical Engineering

James L. McClelland (mcclelland@stanford.edu)
Department of Psychology

Surya Ganguli (sganguli@stanford.edu)
Department of Applied Physics
Stanford University, Stanford, CA 94305 USA

Abstract
Psychological experiments have revealed remarkable regularities in the developmental time course of cognition. Infants generally acquire broad categorical distinctions (i.e., plant/animal) before finer ones (i.e., bird/fish), and periods of little change are often punctuated by stage-like transitions. This pattern of progressive differentiation has also been seen in neural network models as they learn from exposure to training data. Our work explains why the networks exhibit these phenomena. We find solutions to the dynamics of error-correcting learning in linear three layer neural networks. These solutions link the statistics of the training set and the dynamics of learning in the network, and characterize formally how learning leads to the emergence of structured representations for arbitrary training environments. We then consider training a neural network on data generated by a hierarchically structured probabilistic generative process. Our results reveal that, for a broad class of such structures, the learning dynamics must exhibit progressive, coarse-to-fine differentiation with stage-like transitions punctuating longer dormant periods.

Keywords: neural networks; hierarchical generative models; semantic cognition; learning dynamics

Introduction
Our world is characterized by a rich, nested hierarchical structure of categories within categories, and one of the most remarkable aspects of human semantic development is our ability to learn and exploit this structure. Experimental work has shown that infants and children acquire broad categorical distinctions before fine categorical distinctions (Keil, 1979; Mandler & McDonough, 1993), suggesting that human category learning is marked by a progressive differentiation of concepts from broad to fine. Furthermore, humans can exhibit stage-like transitions as they learn, rapidly progressing through successive levels of mastery (Inhelder & Piaget, 1958; Siegler, 1976).

Many neural network simulations have captured aspects of these broad patterns of semantic development (Rogers & Mc Clelland, 2004; Rumelhart & Todd, 1993; McClelland, 1995; Plunkett & Sinha, 1992; Quinn & Johnson, 1997). The internal representations of such networks exhibit both progressive differentiation and stage-like transitions. However, the theoretical basis for the ability of neuronal networks to exhibit such strikingly rich nonlinear behavior remains elusive. What are the essential principles that underly such behavior? What aspects of statistical structure in the input are responsible for driving such dynamics? For example, must networks exploit nonlinearities in their input-output map to detect higher order statistical regularities to drive such learning?

Decomposing the training set
Our fundamental goal is to understand the dynamics of learning in neural networks as a function of the training set. Towards this goal, in this section we introduce the singular
value decomposition, which identifies important dimensions of variation in the training set. The SVD will turn out to be fundamentally linked to learning dynamics, a connection we develop in the next section. We wish to train a neural network to learn a particular input-output map from a set of \(P \) training examples \(\{x^\mu, y^\mu\}, \mu = 1, \ldots, P \). These \(P \) pairs of vectors constitute the training set. In the model of semantic development introduced by Rumelhart and Todd (1993), for instance, elements of \(x^\mu \) correspond to input units representing items such as Canary or Rose. The elements of \(y^\mu \) correspond to output units representing possible predicates or attributes such as can Fly or has Petals that may or may not apply to each item. Hence each example links a particular item to a set of properties, and the training set contains the semantic content in the world to be learned by the network.

For concreteness, we consider a simple example dataset with four items (Canary, Salmon, Oak, and Rose) and five properties. The two animals share the property that they can Move, while the two plants cannot. In addition each item has a unique property: can Fly, can Swim, has Bark, and has Petals, respectively. In a more natural data set, the plant-animal, bird-fish, and tree-flower distinctions are based on clusters of covarying properties, for which the single properties identified here serve as proxies.

An important function of the training set is the input-output correlation matrix

\[
\Sigma^{31} = \sum_{\mu = 1}^{P} y^\mu x^\mu = E[yx^T].
\]

For our example dataset, this matrix is shown in Fig. 2. Each column corresponds to an item, and denotes the properties possessed by that particular item.

Our example dataset contains important shared structure. The Canary and Salmon, for instance, both can Move, and hence may naturally be grouped together. Intuitively, they are both animals, and as a consequence have certain properties in common that are typical of animals. How can we identify these coherently covarying groups of items and their properties? We will show that the singular value decomposition of the input-output correlation matrix accomplishes exactly this.

The singular value decomposition (SVD)

\[
\Sigma^{31} = U^{33} S^{31} V^{11T} = \sum_{\alpha = 1}^{N_1} s_\alpha u^{\alpha}_v v^{\alpha T},
\]

decomposes any matrix into the product of three matrices. Each of these matrices has an important real world interpretation. We call the \(N_1 \times N_1 \) orthogonal matrix \(V^{11} \) the object analyzer—it determines the position of a particular item along a number of important dimensions of the training set. The first row of \(V^{11T} \), for instance, determines where items sit on an animal-plant dimension, and hence has positive values for the Canary and Salmon and negative values for the plants. In our example dataset, the three dimensions identified by the SVD are animal-plant, bird-fish, and flower-tree.

The \(N_1 \times N_3 \) orthogonal matrix \(U^{33} \) can be interpreted as a feature synthesizer—it contains those features typical of a particular dimension in each column. Hence the feature synthesizer associated with the animal-plant dimension has positive values for can Move, since animals typically can move while plants cannot.

Finally the \(N_1 \times N_1 \) association strength matrix \(S^{31} \) captures the overall strength of the association between an input dimension and output dimension. It is nonzero only on the diagonal; these elements are the singular values \(s_\alpha, \alpha = 1, \ldots, N_1 \) ordered so that \(s_1 \geq s_2 \geq \cdots \geq s_{N_1} \). The large association strength for the animal-plant dimension reflects the fact that this one dimension explains more of the training set than the finer-scale dimensions like bird-fish and flower-tree.

In a larger training set, the SVD will extract modes that capture patterns of coherent covariation in the properties of items in the training set. The quantities defining each mode, \(\{s_\alpha, u^{\alpha}_v, v^{\alpha}\} \), are connected to the learning dynamics of neural networks in the next section.

Gradient descent dynamics in multilayer neural networks

We examine learning in a three layer network (input layer 1, hidden layer 2, and output layer 3) with linear activation functions, simplifying the network model of Rumelhart and Todd (1993). Let \(N_i \) be the number of neurons in layer \(i \), \(W^{21} \) be an \(N_2 \times N_1 \) matrix of synaptic connections from layer 1 to 2, and similarly, \(W^{32} \) an \(N_3 \times N_2 \) matrix of connections from layer 2 to 3. The input-output map of the network is \(y = W^{32} x \), where \(x \) is an \(N_1 \) dimensional column vector representing inputs to the network, and \(y \) is an \(N_2 \) dimensional column vector representing the network output (see Fig. 1).

Training is accomplished in an online fashion via stochas-
tic gradient descent; each time an example μ is presented, the weights W^{32} and W^{21} are adjusted by a small amount in the direction that minimizes the squared error $||y^\mu - W^{32}W^{21}x^\mu||^2$ between the desired output, and the network’s feature output. This gradient descent procedure yields the standard back propagation learning rule

$$\Delta W^{21} = \lambda W^{32T}(y^\mu - y^\mu)x^{\mu T}$$

$$\Delta W^{32} = \lambda (y^\mu - y^\mu)h^{\mu T},$$

for each example μ, where $y^\mu = W^{32}W^{21}x^\mu$ denotes the output of the network in response to input example x^μ, $h^\mu = W^{21}x^\mu$ is the hidden unit activity, and λ is a small learning rate. Here $W^{32T}(y^\mu - y^\mu)$ in (3) corresponds to the signal back-propagated to the hidden units through the hidden-to-output weights. These equations emphasize that the learning process works by comparing the network’s current output y^μ to the desired target output y^μ, and adjusting weights based on this error term.

By a substitution and rearrangement, however, we can equivalently write these equations as

$$\Delta W^{21} = \lambda W^{32T}(y^\mu x^{\mu T} - W^{32}W^{21}x^\mu x^{\mu T})$$

$$\Delta W^{32} = \lambda (y^\mu x^{\mu T} - W^{32}W^{21}x^\mu x^{\mu T}) W^{21T}.$$

This form emphasizes two crucial aspects of the learning dynamics. First, it highlights the importance of the statistics of the training set. In particular, the training set enters only through two terms, one related to the input-output correlations $y^\mu x^{\mu T}$ and the other related to the input correlations $x^\mu x^{\mu T}$. Indeed, if λ is sufficiently small so that weights change only a small amount per epoch, we can rewrite these equations in a batch update form by averaging over the training set to obtain the mean change in weights per learning epoch,

$$\tau \frac{d}{dt} W^{21} = W^{32T}(\Sigma^{31} - W^{32}W^{21} \Sigma^{11})$$

$$\tau \frac{d}{dt} W^{32} = (\Sigma^{31} - W^{32}W^{21} \Sigma^{11}) W^{21T},$$

where $\Sigma^{11} = \sum_{\mu=1}^{N_1} x^{\mu}x^{\mu T}$ is an $N_1 \times N_1$ input correlation matrix, Σ^{33} is the $N_3 \times N_3$ input-output correlation matrix defined previously, and $\tau \equiv \frac{P}{\lambda}$. Hence we see that linear networks are sensitive only to the second order statistics of inputs and outputs. In general the learning process is driven by both the input and input-output correlation matrices. Here we take the simplifying assumption that these input correlations are insignificant; formally, we assume $\Sigma^{11} = I$, the identity matrix. Concretely, this assumption corresponds to the supposition that input representations for different items are highly differentiated from, or orthogonal to each other. While this is unlikely to hold exactly in any natural domain, we take this assumption for two reasons. First, it was used in prior simulation studies (Rogers & McClelland, 2004), and hence our attempt to understand their results is not limited by this assumption. Second, Rogers and McClelland (2004) have shown that relaxing this assumption to incorporate more complex input correlations leaves intact the basic phenomena of progressive differentiation and stage-like transitions in learning. Nevertheless, understanding the impact of input correlations is an important direction for further work.

Second, the form of Eqns. (7)-(8) highlights the coupling between the two equations: to know how to change W^{21} we must know W^{32}, and visa versa, since each appears in the update equation for the other. This coupling is the crucial element added by the addition of a hidden layer, and as we shall see, it qualitatively changes the learning dynamics of the network compared to a “shallow” network with no hidden layer. Intuitively, this coupling complicates the learning procedure since both weight matrices must cooperate to produce the correct answer; but crucially, it enables knowledge sharing between different items, by assigning them similar hidden unit representations. Without this coupling, the network would learn each item-property association independently, and would not be sensitive to shared structure in the training set.

The temporal dynamics of learning To understand the connection between learning dynamics and training set statistics, then, we can solve Eqns. (7)-(8). We have found a class of exact solutions (whose derivation will be presented elsewhere) that describe the weights of the network over time during learning, as a function of the training set. In particular, the composite mapping at any time t is given by

$$W^{32}(t)W^{21}(t) = \sum_{a=1}^{N_2} a(t, s_a, a_0) u^{aT},$$

where the function $a(t, s, a_0)$ governing the strength of each input-output mode is given by

$$a(t, s, a_0) = \frac{se^{2a/\tau}}{e^{2a/\tau} - 1 + s/a_0}.$$

That is, the network learns about the N_2 strongest input-output modes identified by the singular value decomposition, progressively incorporating each mode into its representation. The coefficient $a(t, s, a_0)$ describes how strongly input-output mode α has been learned by time t, starting from some small initial value of a_0. As can be seen from Fig. 3, this function is a sigmoidal curve, capturing the fact that the network initially knows nothing about a particular dimension (the animal-plant dimension, say), but over time learns the importance of this dimension and incorporates it into its representation, ultimately reaching the correct association strength s^α. At this point the network correctly maps items onto the animal-plant dimension using the object analyzer vector $v^{\alpha T}$, and generates the corresponding correct features using the feature synthesizer vector u^α.

Eqns. (9)-(10) describe the fundamental connection between the structure of a training set and learning dynamics. In particular, the dynamics depends on the singular value decomposition of the input-output correlation matrix of the
dormancy. Hence the learning dynamics of (7)-(8) exhibit
period can be very brief relative to the long initial period of
the ratio
approximation). Thus, by starting with a very small initial condition
weights change rapidly is
In contrast, the duration of the transition period in which the
takes to reach half mastery (i.e. \(a(t) = s_a - \epsilon\); then the timescale of learning in the
limit \(\epsilon \to 0\) is

\[
t(s, \epsilon) = \frac{\tau}{s_a} \ln \frac{s_a}{\epsilon}.
\]

(11)

Hence up to a logarithmic factor, the time required to learn
an input-output mode is inversely related to its association
strength, quantified through its singular value.

Second, these dynamics reveal stage-like transitions in
learning performance. Intuitively, this property arises from
the sigmoidal transition in (10) from a state in which the net-
work does not represent a particular input-output relation at
all, to a state in which the network fully incorporates that rela-
tion. Because of the sigmoidal shape, the solution can remain
very small for a long period of time before rapidly transition-
ing to mastery. To formalize this, we note that the time it
takes to reach half mastery (i.e. \(a(t_{\text{half}}) = s/2\) is

\[
t_{\text{half}} = \frac{\tau}{2s} \log \left(\frac{s}{a_0} - 1 \right).
\]

(12)

In contrast, the duration of the transition period in which the
weights change rapidly is \(t_{\text{trans}} = \frac{2\tau}{s}\) (using a linear approx-
imation). Thus, by starting with a very small initial condition
for the weights (i.e. \(a_0 \approx 0\), it is clear that one can make the
ratio \(t_{\text{trans}}/t_{\text{half}}\) arbitrarily small, i.e., the transition pe-
riod can be very brief relative to the long initial period of
dormancy. Hence the learning dynamics of (7)-(8) exhibit
sharp stage-like transitions. Importantly, we can prove that
networks with only direct input-output connections and no
hidden layer are not capable of such stage-like transitions.
Their existence is an emergent property of nonlinear learning
dynamics in deep networks with at least one hidden layer.

The result in (9) is the solution to (7)-(8) for a special class
of initial conditions on the weights \(W^{21}\) and \(W^{32}\). However
this analytic solution is a good approximation to the time evo-
lution the network’s input-output map for random small ini-
tial conditions, as confirmed in Fig. 3.

Summary of learning dynamics The preceding analyses
have established a number of crucial features of gradient de-
cent learning in a simple linear network, making explicit the
relationship between the statistical structure of training exam-
ple and the dynamics of learning. In particular, the learning
dynamics depend crucially on the singular values of the input-
output correlation matrix. Each input-output mode is learned
in time inversely proportional to its associated singular value,
yielding the intuitive result that stronger input-output associ-
ations are learned before weaker ones.

The singular values and vectors of
hierarchically generated data
In this section we introduce a hierarchical probabilistic gen-
erative model of items and their attributes that, when sam-
ples, produces a dataset that can be supplied to our neural
network. By analytically calculating the SVD of this data, we
will be able to explicitly link hierarchical taxonomies of cat-
egories to the dynamics of network learning. A key result in
the following is that our network must exhibit progressive dif-
fentiation with respect to any of the underlying hierarchical
taxonomies allowed by our generative model.

Hierarchical feature vectors from a branching diffusion
process We propose a simple generative model of hierar-
chical data \(\{x^\mu, y^\lambda\}\), and compute for this model the input-
output modes \(\{s_a, u^\alpha, v^\beta\}\) which drive learning. The hierar-
chical structure in the generative model is represented by a
tree (see e.g. Fig. 4). Each leaf node of this tree corresponds to
an item in the dataset. Our generative process assigns fea-
tures to these items such that items with more recent common
ancestors are more likely to share features. For instance, our
example dataset might have been generated by a three level
binary tree with four leaf nodes. The top level would separate
the animals from the plants, while the next level would sepa-
rate the birds from the fish and the flowers from the plants.

In detail, to sample one feature’s value across items, the
root node is randomly set to \(+1\) with equal probability \(\frac{1}{2}\); next this value diffuses to children nodes, where its sign is
flipped with a small probability \(\epsilon\). This process continues
until the leaf nodes have been assigned values. These assign-
ments yield the value of this feature on each item.

Under this process, the can Move feature, for example,
might have arisen as follows: randomly the root node of the
three level binary tree was assigned a value of \(1\). This value
diffused down to the two second level nodes, maybe in this instance changing sign to \(-1\) for the parent node of the plants, but not changing for the parent node of the animals. Then these values diffused down to the leaf nodes representing the individual items, perhaps not flipping sign for any of them. Hence the ultimate feature assignment would be \(+1\) on the Canary and Salmon and \(-1\) on the Flower and Tree. This is just one possible sample from the generative model, but serves to illustrate how hierarchical structure arises from the feature generation process. To generate more features, the process is repeated independently \(N\) times.

For simplicity, we consider trees with a regular branching structure. The tree has \(D\) levels indexed by \(l = 0, \ldots, D - 1\), with \(M_l\) total nodes at level \(l\). Every node at level \(l\) has exactly \(B_l\) descendants. Thus \(M_l = M_0 \Pi_{k=0}^{l-1} B_k\). The tree has a single root node at the top \((M_0 = 1)\), and again \(P\) leaves at the bottom, one per example in the dataset \((M_{D-1} = P)\).

We have thus far described the output feature vectors \(y^x\). To complete the specification of the training set, we assume that the input vectors \(x^y\) are simply chosen to be highly distinct (i.e., orthogonal). One such choice is a localist coding scheme in which a different element is active to represent the presence of each item.

Input-output modes of hierarchical data How will our neural network learn about training sets generated as just described? To understand this, we calculate the SVD of such training sets. We will see that the input-output modes identified by the SVD exactly mirror the tree structure used to generate the dataset. The feature generation process described in the previous section generates a training set with \(N\) features. In the limit of large numbers of features, we obtain the following (the full derivation to be presented elsewhere):

The object analyzer vectors exactly mirror the tree structure, as shown in Fig. 4. One mode will correspond to a broad, high level distinction (e.g., animal-plant) near the root of the tree, while another will correspond to a more detailed distinction (e.g., bird-fish). For binary trees, each object analyzer vector will have positive weights on all items on one side of a binary distinction, and negative weights on all items on the other side. The rest of the entries will be zero. Hence this object analyzer vector will only be able to tell items apart with respect to this one distinction. It contains no information about higher or lower level distinctions in the tree. For trees with other branching factors, the situation is the same: additional object analyzer vectors are introduced to permit distinctions between more than two options, but these vectors contain no information about distinctions at other levels in the tree.

The **association strength** or singular value \(s_l\) associated with level \(l\) of the binary tree is

\[
s_l = \sqrt{NP \sum_{k=0}^{D-1} \Delta_k / M_l},
\]

where \(q_k = (1 - 4\epsilon(1 - \epsilon))^{D-1-k}\) and \(\Delta_l \equiv q_l - q_{l-1}\), with the caveat that \(q_{-1} \equiv 0\).

![Figure 4: Statistical structure of hierarchical data. (a) Example hierarchical diffusion process with \(D = 4\) levels and branching factor \(B = 2\). (b) Analytically derived input singular vectors, or modes, (up to a scaling) of the resulting data, ordered top-to-bottom by singular value. Besides mode 0, each mode, or object analyzer, can discriminate objects, or leaves of the tree, whose first common ancestor arises at a given level of the tree. This level is 0 for mode 2, 1 for modes 3 and 4, and 3 for modes 5 through 8. Singular modes corresponding to broad distinctions (higher levels) have larger singular values, and hence will be learned earlier. (c) The covariance matrix between pairs of objects in the output feature space consists of hierarchically organized blocks.](image)

While this equation gives the correct quantitative value for the association strength in terms of the parameters of the generative process, its most important property is its qualitative behavior: it is a decreasing function of the hierarchy level \(l\) (see, e.g., Fig. 5). Crucially, this means that the input-output modes corresponding to broader distinctions like animal-plant have a stronger association strength than those corresponding to finer distinctions like bird-fish. Since we have previously shown that modes with stronger association strengths are learned more quickly, this immediately implies that broader distinctions among examples will be learned faster than fine-grained distinctions among examples.
By connecting probabilistic models and neural networks, our framework quantitatively links structured environments to learning dynamics. In future work, it will be important to compare the features of our neural network learning model with those of structured probabilistic learning models (e.g., Kemp and Tenenbaum 2008). Like structured models, neural networks can learn a range of different structure types, but unlike structured models, networks can learn without prior enumeration of such structures. Furthermore, networks can easily learn to represent data that are approximations or hybrids of different structure types–features that, we believe, characterize natural domains, such as the domain of living things considered here.

Acknowledgments

S.G. thanks DARPA, BioX, Burroughs-Wellcome, and Sloan foundations for support. J.L.M. was supported by AFOSR. A.S. was supported by a NDSEG Fellowship and MBC Traineeship. We thank Juan Gao and Jeremy Glick for useful discussions.

References

