
Analyzing noise in autoencoders and deep networks

Ben Poole∗, Jascha Sohl-Dickstein†, Surya Ganguli†
Departments of Computer Science∗ and Applied Physics†

Stanford University, Stanford, CA 94305
poole@cs.stanford.edu , {jascha, sganguli}@stanford.edu

Abstract

Autoencoders have emerged as a useful framework for unsupervised learning of
internal representations, and a wide variety of apparently conceptually disparate
regularization techniques have been proposed to generate useful features. Here we
extend existing denoising autoencoders to additionally inject noise before the non-
linearity, and at the hidden unit activations. We show that a wide variety of previ-
ous methods, including denoising, contractive, and sparse autoencoders, as well as
dropout can be interpreted using this framework. This noise injection framework
reaps practical benefits by providing a unified strategy to develop new internal
representations by designing the nature of the injected noise. We show that noisy
autoencoders outperform denoising autoencoders at the very task of denoising,
and are competitive with other single-layer techniques on MNIST, and CIFAR-
10. We also show that types of noise other than dropout improve performance
in a deep network through sparsifying, decorrelating, and spreading information
across representations.

1 Introduction

Regularization through noise [3, 1] has regained focus recently in the training of supervised neural
networks. Randomly dropping out units while performing backpropagation has been shown to con-
sistently improve the performance of large neural networks [13, 10]. Stochastic pooling, where a
set of input units are gated based off their activations, has also been shown to improve performance
in convolutional nets over noiseless max and average pooling [23, 15]. The role of input noise in
training unsupervised networks has also been extensively explored in recent years [21]. Injecting
noise into the input layer of autoencoders has been shown to yield useful representations in these
denoising autoencoders.

Motivated by the success of noise injection at the input layer in autoencoders, and at the hidden lay-
ers in supervised learning settings, we systematically explore the role of noise injection at all layers
in unsupervised feature learning models. As we shall see, this provides a unified framework for
unsupervised learning based on the principle that hidden representations should be robust to noise.
This yields an extension of prior methods for regularizing autoencoders that we call the noisy autoen-
coder (NAE). For certain types of NAEs, we are able to marginalize out the noise, and derive a set
of penalties that relate noise injection with contractive autoencoders, sparse autoencoders, dropout,
and ICA. Experiments on MNIST and CIFAR-10 validate the effectiveness of noisy autoencoders at
learning useful features for classification.

Building upon the recent success of dropout, we also experiment with further supervised fine-tuning
of NAEs in which the noise is also injected at the supervised stage. We show that training noisy
autoencoders with dropout noise, and supervised fine-tuning with dropout noise, allows us to waste
less capacity in larger autoencoder networks. We also show that purely supervised training with
additive Gaussian noise beats dropout on MNIST. We compare the effect of these different types of
noise, and argue that these results point to an interaction between noise in unsupervised and super-

1

ar
X

iv
:1

40
6.

18
31

v1
 [

cs
.N

E
]

 6
 J

un
 2

01
4

vised learning that may be more complex. These results suggest that we may be able to optimize
stacked learning strategies by introducing different types of noise for the unsupervised pretraining
relative to the supervised fine-tuning.

2 Autoencoder Framework

2.1 Autoencoders and Denoising Autoencoders

An autoencoder is a type of one layer neural network that is trained to reconstruct its inputs. In
the complete case, this can trivially be accomplished using an identity transformation. However, if
the network is constrained in some manner, then the autoencoder tends to learn a more interesting
representation of the input data that can be useful in other tasks such as object recognition. The
autoencoder consists of an encoder that maps inputs to a hidden representation: f(x) = sf (Wx+b),
and a decoder that maps the hidden representation back to the inputs: g(h) = sg(W

′h + d). The
composition of the encoder and decoder yield the reconstruction function: r(x) = g(f(x)). The
typical training criterion for autoencoders is minimizing the reconstruction error,

∑
x∈X L(x, r(x))

with respect to some loss L, typically either squared error or the binary cross-entropy [2].

Denoising autoencoders (DAEs) are an extension of autoencoders trained to reconstruct a clean
version of an input from its corrupted version [21]. The denoising task requires the network to learn
representations that are able to remove the corrupted noise. Prior work has shown that DAEs can be
stacked to learn more complex representations that are useful for a variety of tasks [5, 21, 4]. The
objective for the DAE can be written as

∑
x∈X E [L(x, r(x̃))] where x̃ is a corrupted version of the

input x.

2.2 Noisy Autoencoder Model

Inspired by the recent work on dropout, we extend denoising autoencoders to allow for the injection
of additional noise at the input and output of the hidden units. We call these models noisy autoen-
coders (NAEs) as their hidden representations are stochastic, and no longer a deterministic function
of the input. Injecting noise into both the inputs and hidden representations of autoencoders has been
proposed for linear networks in prior work by [11], but has not been analyzed in detail for nonlinear
representations. We parameterize the noise in the NAE as a tuple (εI , εH, εZ) that characterizes the
distribution of the noises corrupting the input, hidden unit inputs, and hidden activations respectively
(see Figure 1). We define the encoder and reconstruction function for the NAE model as:

h̃(x, εI , εZ , εH) = f̃θ(x) = sf ((W (x� εI) + b)� εZ)� εH (1)

r(x, εI , εZ , εH) = sg

([
W ′h̃(x, εI , εZ , εH) + d

]
� εH

)
(2)

where � denotes either addition or multiplication, sf and sg are elementwise nonlinearities and we
use tildes to denote corrupted versions of variables. As with the DAE, we optimize the expected
reconstruction error when training:

∑
x∈X E [L(x, r̃(x, εI , εZ , εH)].

When using the NAE to extract features or perform denoising on testing data we can compute the
expectation of the noisy hidden activation or reconstruction by sampling from the NAE. However,
this can be prohibitively costly on large datasets. Instead, we can approximate the expectation by
scaling each of the corrupted variables by their expectation as in dropout. In practice we only use
noise where the corruption of the input variable does not alter the mean so that no scaling is needed.
The test-time hidden representation and reconstruction are then computed in the same way as the
vanilla autoencoder.

2.3 Relationships between noise types

Due to the parameterization of noise in the noisy autoencoder, there are many possible choices of
noise (εI , εZ , εH), that will yield equivalent effective noise on the reconstruction. In particular, we
can always rewrite a NAE so that the only source of noise is on the hidden activations εH.

To analyze the effect of introducing noise before the encoder nonlinearity, we perform a first-order
Taylor expansion of the encoder function: sf (Wx̃ + εZ) ≈ sf (Wx̃) + diag(s′f (Wx̃)))εZ . Thus,

2

Reconstruction

✏I

x x̃ r
h h̃z z̃

Input

✏Z

Hidden Unit Input Hidden Unit Activation

✏H

z = Wx̃

z̃ = z � ✏Z
h = f(z̃)

h̃ = h � ✏H
r = W 0h̃

r̄ = W 0f(Wx)x̃ = x � ✏I

Figure 1: Noisy autoencoder (NAE) model. Tildes indicate corrupted versions of the previous layer.

for small noise, adding noise εZ ∼ Q to the linear encoder part is equivalent to having hidden noise:
εH ∼ diag(s′f (Wx̃)))Q.

If the input noise is Gaussian with some covariance Σ, then the equivalent hidden unit input noise is
Gaussian with covariance WΣWT . If the singular values of W are sufficiently small, then we can
use the above result to get the effective hidden noise: εH ∼ N(0,diag(s′f (Wx))WΣWT). If the
input noise is dropout (multiplicative bernoulli), then we can use the result from [22] to approximate
εZ as a Gaussian with some mean and diagonal covariance. These simple relationships allow us to
identify the covariance structure of noise at the hidden unit activations that corresponds to input and
hidden unit input noise.

2.4 Marginalized Noise Penalties

To understand the impact that these additional sources of noise have on autoencoder training we
analyze a simplified NAE. We assume that the decoder is linear (sg(x) = x), the loss function used
is squared error, and that all the corruptions are applied independently to each neuron. This allows
us to exactly marginalize out the noise on the hidden unit activations using a result from [3]:

E
[
‖x− r(x, εH)‖2

]
= ‖x− r(x)‖2 + tr(WWTVar(h̃|h)) (3)

We can then apply the approximation results from above to yield cost functions corresponding to
marginalizing out each different type of noise independently:

L(W) ≈
∑
x∈X

[r̄(x) + cH(x) + cZ(x) + cI(x)] (4)

cH(x) =
∑d
i=1 Var(h̃i|h)‖wi‖2 (5)

cZ(x) ≈∑d
i=1 Var(z̃i|z)(f ′(wTi x)‖wi‖)2 (6)

cI(x) ≈ ‖WWTdiag(f ′(Wx))Var(x̃|x)‖2F (7)

where d is the number of hidden units, and w′i is the ith column of W ′. Note that the penalty cH(x)
is exact, while the penalties for noise at the input and hidden unit inputs will only be accurate when
the variance of their noises are small. These penalties allow us to relate injection of noise in a NAE
with regularization penalties from other regularized autoencoders.

3 Connections to prior work

The noisy autoencoder and associated marginalized noise penalties provide a framework for com-
paring many types of regularized autoencoders, and help to explain the utility of injecting noise into
more general neural networks.

3

3.1 Regularized Autoencoders

The marginalized input noise penalty from the noisy autoencoder provides an intuition in the success
of denoising autoencoders. If we use tied weights, and additive Gaussian corrupting noise with
variance σ2 then the penalty becomes:

cI(x) = ‖WWTdiag(s′f (Wx))σ2‖2F = σ4∑
i,j

(
‖wTi wj‖(s′f (wTi x))

)2
(8)

This penalty encourages the hidden units to learn orthogonal representations of the input, and pro-
vides a contractive-like penalty on individual filters. A similar type of penalty is found when learning
overcomplete representations with reconstruction ICA, where they use ‖WWT − I‖2F to encourage
a diverse set of filters [14].

When stacking denoising autoencoders, we end up with a similar structure to a noisy autoencoder. In
the case of building a two layer network, the standard practice is to first train a denoising autoencoder
on the input, then compute the first layer representation by encoding the clean inputs. Training a
denoising autoencoder on the second layer will corrupt the first layer representation, but will not
impact the prior encoding model learned for the first layer. In contrast, training a NAE with noise
on the hidden unit activations allows for the first layer representation to learn to be robust to noise
in its hidden representation.

Contractive autoencoders aim to learn a representation that is insensitive to small changes in
the input space [16]. They penalize the Frobenius norm of the Jacobian of the encoder function,
λ||Jf (x)||2F =

∑d
i=1 s

′
f (wTi x)‖wi‖2. If we inject additive white Gaussian noise at the hidden in-

puts, then we recover the same penalty. Alternatively, we can inject additive noise with covariance
diag(s′f (Wx)2) at the hidden unit activations and recover the exact penalty. This result has been
previously reported in [17], and motivated the contractive penalty.

Sparse autoencoders force all hidden units to have similar mean activations[8] . We cannot directly
relate this penalty to a form of noise, but we can recover a penalty that encourages sparsity on
hidden unit activations. If we inject additive Gaussian noise on the activations of the hidden units
with variance equal to the uncorrupted hidden unit activation then the marginalized noise penalty
becomes: cH(x) =

∑d
i=1 hi‖wi‖2. If activations are non-negative then this penalty will force many

of the hidden unit activations to zero. We note that experimental results from neuroscience have
shown that cortical neurons exhibit Poisson-like noise statistics with a Fano factor of 1.

3.2 Dropout

Dropout is a simple regularizer used in training neural networks that applies multiplicative bernoulli
noise to all units in a neural network [10]. This noise has been shown to effectively regularize deep
neural networks, and has been linked to preventing co-adaptation of neurons and model averaging
[9]. The primary motivation for NAEs was the success of dropout in improving generalization
performance. We can analyze the effect of dropout noise in NAEs by computing the corresponding
marginalized noise penalty: cH(x) =

∑d
i=1 Var(h̃i|h)‖w′i‖2 = p(1 − p)

∑d
i=1(hi‖w′i‖)2 Thus

dropout in a NAE shrinks the average size of the projective fields (hi‖w′i‖) of the hidden units.
Shrinking the size of the projective field helps to reduce the sensitivity of the reconstruction to
dropping out hidden units.

3.3 Other models

Recent work in neuroscience has shown that single-layer models trained with input and output noise
and optimized to maximize mutual information yield receptive fields resembling those found in
biological systems [7, 12]. Similar to our work, these models show the importance of input noise
and hidden activation noise on learning representations.

In semantic hashing, Gaussian noise is injected at an intermediate layer to learn binary representa-
tions [19]. These representations allow for fast matching in lower-dimensional space using binary
codes. To the best of our knowledge the advantage of adding noise in terms of accuracy of the fully
trained autoencoder is not discussed.

4

4 Autoencoder Experiments

Our theoretical analysis of noisy autoencoders shows that NAEs can implement a variety of regu-
larized autoencoder penalties. Here we evaluate the effectiveness of noisy autoencoders at learning
representations through a variety of experiments on natural images, MNIST, and CIFAR-10.

All experiments used stochastic gradient descent with momentum to train models. We found that
momentum was critical in training both autoencoders and supervised deep networks. Learning rates,
batch size, and additional hyperparameters were selected through a combination of manual and au-
tomatic grid searches on validation sets. We consider autoencoders with a sigmoidal encoder, linear
decoder, and squared error loss. We experimented with isotropic Gaussian input noise with fixed
variance σ2

I , isotropic Gaussian hidden unit input noise with fixed variance σ2
Z , and hidden unit

activation noise that was either dropout (with inclusion probability p), additive zero mean Gaus-
sian with variance σ2

H or multiplicative Gaussian with mean 1 and variance σ2
H. Unless otherwise

specified, we fix the input noise to be σ2
I = 0.1, and the number of hidden units to be 1000. All

experiments were run in Python using the Pylearn21 framework on a single Intel Xeon machine with
an NVIDIA GTX 660 GPU.

4.1 Denoising Natural Images

In our first experiment, we evaluated the effect of dropout noise on the generalization performance
of a noisy autoencoder. We trained two NAEs on 12x12 patches drawn from the van Hateren natural
image dataset [20]. The first NAE had noise on the input but not hidden activations (simply a
DAE), while the second additionally had dropout noise with p = 0.5 on the hidden activations. We
evaluated denoising performance on an independent set of image patches with noise variance equal
to the corrupting input noise of the NAE, and computed the average reconstruction error over 1000
noisy inputs. The NAE with and without dropout had average reconstruction errors of 2.5, and 3.2
respectively. Thus NAEs are able to improve denoising performance over typical DAEs.

4.2 Effect on MNIST Features

To better understand the impact of dropout on NAE features, we trained a set of models with varying
levels of input noise and dropout noise on hidden activations. We used smaller networks for this
experiment, with 250 hidden units and training on only the first 10,000 digits of MNIST.

In Figure 2 (left), we show the effect of input noise and hidden unit activation noise on the learned
features. With no input or hidden activation noise, the noisy autoencoder reduces to a vanilla au-
toencoder and tends to learn features which do not capture interesting structure in the data. As we
increase the input noise, we learn features that capture increasingly larger local structure in the dig-
its, as found in DAEs [21]. Increasing hidden activation noise leads to more global features that tend
to resemble large strokes or segments of digits. If we increase both input noise and activation noise,
we find features which resemble larger sections of digits. We also evaluated the classification error
for these different models by using them to initialize a multilayer perceptron with a softmax classi-
fier on top of the learned hidden representation. Importantly, we find the best performing model for
classification contains both input noise and hidden activation noise (Figure 2, right).

4.3 MNIST Classification

To better evaluate the impact of hidden unit input and activation noise on NAE classification perfor-
mance, we trained larger models with 2000 hidden units and fixed the Gaussian input noise variance
at 0.1. We considered Gaussian noise at the hidden unit inputs, and both dropout and Gaussian
noise at the hidden unit activations. These models were used as initialization for a MLP that was
trained with standard backpropagation. The level of hidden noise on 10000 heldout examples from
the training set was used to optimize the noise level. We also trained standard autoencoders, DAEs,
and CAEs of the same architecture. We found that NAEs with a dropout of p = 0.25 achieved the
lowest test error of 138.

1http://github.com/lisa-lab/pylearn2

5

Figure 2: Impact of input and hidden activation noise on filters (left) and classification performance
(right). Each block in the 4x4 grid corresponds to a different NAE model. The first column is a DAE
as there is no output noise.

Table 1: Comparison of classification performance for autoencoder models trained on MNIST with
2000 hidden units. Columns indicate different pretraining methods, and rows indicate different
supervised training methods

hhhhhhhhhhhhhhFine-Tuning
Pretraining AE DAE CAE DAE+Poisson DAE+Dropout DAE+Gaussian

Backprop Test Errors 164 145 149 143 138 159
Dropout Test Errors 143 128 109 122 99 135

Gaussian Test Errors 147 120 115 145 105 151

Given the pretrained NAE, we can also perform noisy backpropagation where we continue injecting
noise into the model while training the classifier. This noise can be the same as when we perform
pretraining, but it can also be an entirely different type of noise. We consider performing noisy
backpropagation with σ2

I = 0.1, and hidden noise that is either dropout with p = 0.25, or Gaussian
additive noise with σ2

H = 0.025. We find that the NAE dropout model tuned with dropout noise
achieves a test error of 99. To the best of our knowledge, this is the lowest classification error
achieved on MNIST with a single layer model. This model is able to waste less capacity in a large
network, but requires regularization while performing supervised fine-tuning to prevent overfitting.

Supervised training with Gaussian hidden noise also improves performance relative to standard
backpropagation. However, Gaussian hidden noise does not help very much in the unsupervised
features as it simply does weight decay.

4.4 CIFAR-10 Classification

To validate the utility of NAEs in other models, we also analyze the CIFAR-10 dataset. We train a
NAE with σ2

I = 0.25, dropout hidden activation noise with p = 0.5, and 800 units on 6x6 patches
extracted from the CIFAR-10 dataset. Using these features, we extract a high level representation
of full size images using the pipeline from [6]. Training an SVM classifier on the resulting repre-
sentation yielded an accuracy of 74.5%. This accuracy is slightly lower than that reported for the
higher-order CAE [18], but better than all other regularized autoencoder representations. Training
a DAE results in a lower accuracy of 73.6%, indicating that adding dropout noise while learning
features is helpful.

6

Table 2: Comparison of classification performance for autoencoder models trained on MNIST with
2000 hidden units. Columns indicate different pretraining methods, and rows indicate different
supervised training methods

DAE DAE + Dropout DAE + Poisson
Accuracy 71.1% 74.6% 76.9%

Table 3: Comparison of classification performance for autoencoder models trained on MNIST with
2000 hidden units. Columns indicate different pretraining methods, and rows indicate different
supervised training methods

No noise Dropout Gaussian Poisson
Test Errors 154 110 85 92

4.5 Purely Supervised MNIST

We have shown that different types of noise can be used to regularize hidden representations and
improve classification performance on MNIST and CIFAR-10. Furthermore, we found that both
dropout and additive Gaussian noise on hidden activations while fine-tuning can improve classifi-
cation error. Here we experiment with a deep MNIST model from [10]. This model consists of
two hidden layers of 1200 rectified linear units, and was trained with dropout on the inputs and
hidden activations. It was formerly the state-of-the-art result for single models not incorporating
prior domain knowledge or pretraining, but has recently been surpassed by maxout networks [9].
Both these networks utilize dropout while training, and the same scaling we perform at test time.
Instead of training with dropout, we use other types of noise on the input and hidden unit activations.
We experimented with additive Gaussian noise with a fixed variance, and additive Gaussian noise
whose variance was proportional to the mean activation (we call this Poisson noise as a shorthand).
We optimized these networks using SGD with momentum using the same parameters as in [10]. As
in previous experiments, we fixed σ2

I = 0.1, and selected σ2
H through cross validation for additive

Gaussian noise. We found that our best Gaussian model had 85 errors on the test set and the best
Poisson model has 92 errors, beating both dropout and maxout networks.

To better understand why these other types of noise beats dropout and the noiseless version, we
visualized the hidden representation for both networks (Figure 3). We find that Gaussian noise leads
to less noisy first layer filters, and tends to group together more similar second layer features. To
further understand the influence of noise on the network, we analyzed the activations across the
3 different types of noise, and the noiseless network. We found that all types of noise increase
both the lifetime and population sparsity of neurons in both layers of the network. Gaussian noise
yielded the sparsest second layer representations, while dropout noise yieldest the sparsest first
layer representations both in lifetime and population sparseness (Figure 4, rows 1 and 2). We also
found that noise decorrelated activations relative to the noiseless network (Figure 4, row 3). This
decorrelation with noise also flattened the spectrum of the activations, where the cumulative variance
explained grew slower for the noisy networks (Figure 4, row 4). These results show that noise acts
to sparsity and decorrelate representations, and spread information more evenly across the network.

5 Discussion

In summary, by proposing a unifying principle for auto-encoders, namely robustness of auto-
encoders to injections of noise at all levels of internal representation, we have generated a framework
for viewing a wide variety of previous training algorithms through a unified lens. Different choices
of where to inject noise, and what type of noise, lead to different algorithms. This allows us to
generate many new training algorithms by designing noise, not only in NAE’s but also in networks
engaged in direct supervised learning.

Using these techniques we can achieve very good performance on benchmark tasks. We are able
to obtain the best performing pretrained one layer model on MNIST, as well as the best performing

7

Top 5AvgAvg Top 5

(a) (b)

Figure 3: Visualization of features learned in the deep MNIST network for (a) dropout and (b)
additive Gaussian noise (right). Each row corresponds to a different second layer neuron. The first
column indicates the average of all the underlying first layer feature weights times the connection
strength to that neuron. The remaining columns show the 5 most strongly connected first layer
features

deep model that does not incorporate prior knowledge or pretraining. However, we stress that we
have perhaps not even begun to explore the full power of NAEs, as we have not systematically
explored the huge design space for what type of noise to inject, and where and when to inject it. A
great deal of research lies ahead in understanding this design space and generating the algorithms
and theories for automatically making data dependent design choices in this space. Furthermore,
both the space of noise that is useful for supervised training must also be explored, as well as how
noise in NAEs and noise while supervised fine-tuning interact to optimize performance.

Finally, intuitively, why might noise injection in the internal representations of a deep network be a
good idea? We hypothesize that because each training data point has an inherent noise ball around
its hidden representation, classification will not be possible unless data points of different classes
lie outside each other’s noise balls. This introduces an effective repulsion between data points of
different classes in the space of hidden representations. On the other hand, the invariance of the
classifier required to properly categorize different inputs of the same class introduces an inherent
compressive force in the projective map from the input level to the hidden level. Thus noise on
internal representations leads to a spreading of representations of different classes, and a contraction
within classes that may be beneficial for generalization.

References
[1] Guozhong An. The effects of adding noise during backpropagation training on a generalization perfor-

mance. Neural computation, 8(3):643–674, 1996.

[2] Yoshua Bengio. Deep Learning of Representations: Looking Forward. arXiv.org, May 2013.

[3] Chris M Bishop. Training with noise is equivalent to Tikhonov regularization. Neural computation,
7(1):108–116, 1995.

[4] Minmin Chen, Zhixiang Xu, Kilian Weinberger, and Fei Sha. Marginalized Denoising Autoencoders for
Domain Adaptation. arXiv.org, June 2012.

[5] Kyunghyun Cho. Boltzmann Machines and Denoising Autoencoders for Image Denoising. January 2013.

[6] A Coates, H Lee, and A Y Ng. An analysis of single-layer networks in unsupervised feature learning.
Ann Arbor, 1001:48109, 2010.

[7] E Doi, J L Gauthier, G D Field, and J Shlens. Efficient coding of spatial information in the primate retina.
The Journal of . . . , 2012.

[8] Ian Goodfellow, Quoc Le, Andrew Saxe, Honglak Lee, and Andrew Y Ng. Measuring invariances in deep
networks. Advances in neural information processing systems, 22:646–654, 2009.

[9] Ian J Goodfellow, David Warde-Farley, Mehdi Mirza, Aaron Courville, and Yoshua Bengio. Maxout
Networks. arXiv.org, February 2013.

[10] Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R Salakhutdinov.
Improving neural networks by preventing co-adaptation of feature detectors. arXiv.org, July 2012.

8

0.0 0.2 0.4 0.6 0.8 1.0

Lifetime Sparsity

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

Fr
e
q
u
e
n
cy

Layer 1

0.0 0.2 0.4 0.6 0.8 1.0

Lifetime Sparsity

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Fr
e
q
u
e
n
cy

Layer 2

No noise

Dropout

Gaussian

Poisson

0.0 0.2 0.4 0.6 0.8 1.0

Population Sparsity

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Fr
e
q
u
e
n
cy

Layer 1

0.0 0.2 0.4 0.6 0.8 1.0

Population Sparsity

0.00

0.02

0.04

0.06

0.08

0.10

Fr
e
q
u
e
n
cy

Layer 2

No noise

Dropout

Gaussian

Poisson

0.4 0.2 0.0 0.2 0.4

Pairwise Correlation

0.00

0.02

0.04

0.06

0.08

0.10

Fr
e
q
u
e
n
cy

Layer 1

0.4 0.2 0.0 0.2 0.4

Pairwise Correlation

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Fr
e
q
u
e
n
cy

Layer 2

No noise

Dropout

Gaussian

Poisson

100 101 102 103 104

Components

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e
 V

a
ri

a
n
ce

 E
x
p
la

in
e
d

Layer 1

100 101 102 103 104

Components

0.0

0.2

0.4

0.6

0.8

1.0
Layer 2

No noise

Dropout

Gaussian

Poisson

Figure 4: Effect of noise type on sparsity and activations at test time. See text for details.

[11] H Inayoshi and T Kurita. Improved Generalization by Adding both Auto-Association and Hidden-Layer-
Noise to Neural-Network-Based-Classifiers. Machine Learning for Signal Processing, 2005 IEEE Work-
shop on, pages 141–146, 2005.

[12] Yan Karklin and Eero Simoncelli. Efficient coding of natural images with a population of noisy Linear-
Nonlinear neurons.

[13] Alex Krizhevsky, Ilya Sutskever, and Geoff Hinton. Imagenet classification with deep convolutional
neural networks. pages 1106–1114, 2012.

[14] Quoc V Le, Alexandre Karpenko, Jiquan Ngiam, and Andrew Y Ng. Ica with reconstruction cost for
efficient overcomplete feature learning. Advances in neural information processing systems, 24:1017–
1025, 2011.

[15] Honglak Lee, Roger Grosse, Rajesh Ranganath, and Andrew Y Ng. Convolutional deep belief networks
for scalable unsupervised learning of hierarchical representations. pages 609–616, 2009.

[16] S Rifai, P Vincent, X Muller, X Glorot, and Y Bengio. Contractive auto-encoders: Explicit invariance
during feature extraction. 2011.

9

[17] Salah Rifai, Xavier Glorot, Yoshua Bengio, and Pascal Vincent. Adding noise to the input of a model
trained with a regularized objective. arXiv.org, April 2011.

[18] Salah Rifai, Grégoire Mesnil, Pascal Vincent, Xavier Muller, Yoshua Bengio, Yann Dauphin, and Xavier
Glorot. Higher order contractive auto-encoder. In ECML PKDD’11: Proceedings of the 2011 Euro-
pean conference on Machine learning and knowledge discovery in databases. Springer-Verlag, September
2011.

[19] Ruslan Salakhutdinov and Geoffrey Hinton. Semantic hashing. RBM, 500(3):500, 2007.

[20] J Hans van Hateren and Arjen van der Schaaf. Independent component filters of natural images com-
pared with simple cells in primary visual cortex. Proceedings of the Royal Society of London. Series B:
Biological Sciences, 265(1394):359–366, 1998.

[21] P Vincent, H Larochelle, I Lajoie, Y Bengio, and P A Manzagol. Stacked denoising autoencoders: Learn-
ing useful representations in a deep network with a local denoising criterion. Journal of Machine Learning
Research, 11:3371–3408, 2010.

[22] Sida I Wang and Christopher D Manning. Fast dropout training.

[23] Matthew D Zeiler and Rob Fergus. Stochastic Pooling for Regularization of Deep Convolutional Neural
Networks. arXiv.org, January 2013.

10

	1 Introduction
	2 Autoencoder Framework
	2.1 Autoencoders and Denoising Autoencoders
	2.2 Noisy Autoencoder Model
	2.3 Relationships between noise types
	2.4 Marginalized Noise Penalties

	3 Connections to prior work
	3.1 Regularized Autoencoders
	3.2 Dropout
	3.3 Other models

	4 Autoencoder Experiments
	4.1 Denoising Natural Images
	4.2 Effect on MNIST Features
	4.3 MNIST Classification
	4.4 CIFAR-10 Classification
	4.5 Purely Supervised MNIST

	5 Discussion

