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Direction Selectivity in Drosophila Emerges from Preferred-
Direction Enhancement and Null-Direction Suppression

X Jonathan Chit Sing Leong,1* Jennifer Judson Esch,1* Ben Poole,2* Surya Ganguli,3

and Thomas Robert Clandinin1

1Department of Neurobiology, School of Medicine, 2Department of Computer Science, and 3Department of Applied Physics, Stanford University, Stanford,
California 94305

Across animal phyla, motion vision relies on neurons that respond preferentially to stimuli moving in one, preferred direction over the
opposite, null direction. In the elementary motion detector of Drosophila, direction selectivity emerges in two neuron types, T4 and T5,
but the computational algorithm underlying this selectivity remains unknown. We find that the receptive fields of both T4 and T5 exhibit
spatiotemporally offset light-preferring and dark-preferring subfields, each obliquely oriented in spacetime. In a linear-nonlinear mod-
eling framework, the spatiotemporal organization of the T5 receptive field predicts the activity of T5 in response to motion stimuli. These
findings demonstrate that direction selectivity emerges from the enhancement of responses to motion in the preferred direction, as well
as the suppression of responses to motion in the null direction. Thus, remarkably, T5 incorporates the essential algorithmic strategies
used by the Hassenstein–Reichardt correlator and the Barlow–Levick detector. Our model for T5 also provides an algorithmic explana-
tion for the selectivity of T5 for moving dark edges: our model captures all two- and three-point spacetime correlations relevant to motion
in this stimulus class. More broadly, our findings reveal the contribution of input pathway visual processing, specifically center-
surround, temporally biphasic receptive fields, to the generation of direction selectivity in T5. As the spatiotemporal receptive field of T5
in Drosophila is common to the simple cell in vertebrate visual cortex, our stimulus-response model of T5 will inform efforts in an
experimentally tractable context to identify more detailed, mechanistic models of a prevalent computation.
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Introduction
Perception relies critically on neural circuits that give rise to stim-
ulus selectivity. Across brain regions and animal phyla, astonish-

ing stimulus selectivity emerges only a few synapses into the
brain. Starting from highly complex patterns of neuronal activity
at the sensory epithelium, what computational algorithms enable
downstream neurons to respond to specific sensory events and
not others? Motion vision provides a paradigmatic example of
stimulus selectivity, requiring that neurons compare visual con-
trast inputs across space and time to respond more strongly
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Significance Statement

Feature selective neurons respond preferentially to astonishingly specific stimuli, providing the neurobiological basis for percep-
tion. Direction selectivity serves as a paradigmatic model of feature selectivity that has been examined in many species. While
insect elementary motion detectors have served as premiere experimental models of direction selectivity for 60 years, the central
question of their underlying algorithm remains unanswered. Using in vivo two-photon imaging of intracellular calcium signals, we
measure the receptive fields of the first direction-selective cells in the Drosophila visual system, and define the algorithm used to
compute the direction of motion. Computational modeling of these receptive fields predicts responses to motion and reveals how
this circuit efficiently captures many useful correlations intrinsic to moving dark edges.
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to motion in one preferred direction (PD) over motion in the
opposite null direction (ND) (Clifford and Ibbotson, 2002).
However, this computational problem does not have a unique
solution; a direction-selective neural circuit may enhance re-
sponses to motion in the PD, or it may suppress responses to
motion in the ND (Borst and Euler, 2011). Here we demonstrate
that the most upstream direction-selective neurons in Drosophila
actually implement both of these solutions.

Studies of direction-selective behavioral and neuronal re-
sponses in insects have suggested that the direction-selective vi-
sual circuits of these animals implement a Hassenstein–Reichardt
correlator (HRC) (Hassenstein and Reichardt, 1956; McCann,
1973; Buchner, 1976; Reichardt and Poggio, 1976; for review, see
Egelhaaf and Borst, 1993; Borst et al., 2010). In the most upstream
direction-selective stage of the fly HRC (Egelhaaf and Borst, 1993;
Eichner et al., 2011), rectified, low-pass filtered input from one
photoreceptor is multiplied by rectified, but temporally unfil-
tered input from the spatially offset, neighboring photoreceptor.
Low-pass filtering results in delayed and more sustained kinetics.
The particular combination of differential kinetics and spatial
offset of the input pathways aligns them along the spacetime
trajectory of PD motion. Multiplication nonlinearly enhances
the PD response. Indeed, calcium imaging of the most upstream
direction-selective neurons in Drosophila, T4 and T5, has dem-
onstrated precisely this functional signature: nonlinear enhance-
ment of responses to PD motion (Fisher et al., 2015b).

Despite �60 years of behavioral and neurophysiological evi-
dence in support of the HRC, its specific neural correlates in
the fly brain have been revealed only more recently. In the fly
motion-processing stream, third-order medulla neurons are
contrast selective to either light or dark increments but are not
direction selective (Behnia et al., 2014; Meier et al., 2014; Strother
et al., 2014; Serbe et al., 2016; Yang et al., 2016). Directly postsyn-
aptic to these medulla neurons, T4, which is selective for moving
light edges, and T5, which is selective for moving dark edges,
exhibit direction selectivity (Maisak et al., 2013; Fisher et al.,
2015b). What neural circuit configuration transforms non–
direction-selective inputs into direction-selective outputs? Re-
cent structural studies have revealed systematic anatomical
offsets between the cell types presynaptic to T4 and T5 (Take-
mura et al., 2013; Shinomiya et al., 2014). Given the visuotopic
organization of the fly visual system, these anatomical offsets
correspond to offsets in visual space, consistent with the input
pathways to an HRC. A recent functional study characterized the
spatial and temporal filtering properties of the four major cell
types immediately presynaptic to T5, each of which was selective
for moving dark edges and was necessary for wild-type direction
selectivity in T5 (Serbe et al., 2016).

Absent from this emerging characterization of the functional
circuit architecture underlying direction selectivity in the fly is a
quantitative model for visually evoked responses of T4 and T5.
Despite extensive anatomical and physiological characterization
of the fly motion-processing stream, the algorithm transforming
spatiotemporal visual input into the earliest direction-selective
outputs of T4 and T5 remains unidentified. Here we examined
the visually evoked activity of T4 and T5 with two-photon cal-
cium imaging in vivo, mapping T4 and T5 spatiotemporal recep-
tive fields based on responses to spatiotemporal noise, and
measuring responses to motion stimuli. We found that the
stimulus-evoked activity of T5 is well described by a linear-
nonlinear (LN) stimulus-response model. This model imple-
ments both PD enhancement and ND suppression as direction

selectivity algorithms and accounts quantitatively for the activity
of T5 in response to moving sinusoidal gratings.

Materials and Methods
Fly husbandry and preparation. Drosophila melanogaster were raised on
molasses-based food at 25°C. “Dense” expression of GCaMP6f in T4 and
T5 was achieved in the genotype �/�; UAS-GCaMP6f/UAS-GCaMP6f,
UAS-mtdTomato; R42F06-Gal4/�. Expression of GCaMP6f in sparse
single-cell clones of T4 and/or T5 was achieved in the genotype �/yw,
hs-FLP; UAS-GCaMP6f/tub-FRT-Gal80-FRT; R42F06-Gal4 (Gordon
and Scott, 2009; Gruntman and Turner, 2013). Stochastic Flp-out was
induced by heat-shock at 37°C for 5–10 min during the late third-instar
stage of development.

Female flies were used within 24 h of eclosion for all experiments. To
prepare them for imaging, flies were immobilized by cooling on ice, and
affixed to a custom-machined 304 steel shim (Trinity Brand Industries)
with UV-cured optical epoxy (NOA 63, Norland Optical Adhesives),
which was also applied to the legs to prevent obstruction of the field of
view of the fly. The cuticle, fat bodies, and trachea of the left hemisphere
were removed by manual dissection under ice-cold, low-calcium artifi-
cial hemolymph to expose the left optic lobe for imaging from above.
The ventral aspect of the fly, including eyes and spiracles, remained
dry. Finally, ice-cold, low-calcium artificial hemolymph was ex-
changed with an excess volume of standard artificial hemolymph
(Wilson et al., 2004) at room temperature (20°C–22°C). Artificial
hemolymph at room temperature superfused with carbogen was ex-
changed continuously at 150 mL/h.

Imaging. Fluorescence was monitored in vivo by two-photon micros-
copy. Typically �10 mW of laser excitation (Chameleon Ti-Sapphire,
Coherent) at 925 nm was delivered to the specimen via a Leica SP5 MP
microscope mated to an HCX APO L 20� 1.0 water-immersion objective
(Leica). Red and green emission from tdTomato and GCaMP6f, respec-
tively, were separated from one another with a dichroic mirror (560dcxr,
Chroma Technologies) and bandpass filters (ET525/50m, HC585/40m,
Chroma Technologies). PMT gain was set to 1000 V, and raw PMT
signals were acquired in direct data transfer mode. Bidirectional scan-
ning at 1.4 kHz was used to acquire rectangular images (128 pixels � 256
pixels, rows � columns) at �15 Hz. Pixels measured �290 nm � 290
nm, resulting in a field of view of �37 �m � 74 �m. The FWHM of the
axial point-spread function was �2.5 �m.

Delivery of visual stimuli. Stimuli were programmed with the OpenGL
1.0 API in Visual C#, rendered on an Nvidia K2200 AGP graphics card,
and displayed by rear-projection using a LightCrafter 4500 DLP (Texas
Instruments) configured to use exclusively blue LED illumination. The
stimulus was attenuated with 447/60 bandpass (Semrock) and ND1
filters (Thorlabs). The mean radiance was 0.04 W sr �1 m �2. The stim-
ulus screen (gray, Rose Brand) measured 9 cm � 9 cm and was posi-
tioned �180 mm from the DLP so that the full height of the DLP output
spanned the screen. The stimulus screen was positioned 65 mm from the
fly to subtend �60° � 60° (azimuth � elevation) of the left visual field.
The DLP presented stimuli at native spatial resolution, 912 pixels � 1140
pixels (width � height), at 300 Hz with a period of �333 �s in between
frames, and at 6 bit pixel depth. The stimulus frame was updated at 100
Hz. For each stimulus frame, the timestamp obtained from the system
clock and all parameters needed to regenerate the stimulus frame were
saved directly to disk. The stimulus and data acquisition computers were
linked via NIDAQ 6211 (National Instruments), and timestamps ob-
tained from the system clock were saved directly to disk for each data
frame as well. Stimulus presentation and data acquisition, however, were
asynchronous.

Experiment and stimulus design. Each experiment was composed of a
series of up to five recordings. Per recording, a single stimulus type was
presented. Per stimulus type, a series of stimulus conditions, each with a
different set of stimulus parameters, was presented in a pseudorandom
order, which was reshuffled for each of five runs through the stimulus
conditions. Total experiment time did not exceed 2 h.

Unless otherwise noted, stimulus conditions were interleaved with a
“blank” stimulus condition, comprised of uniform intermediate gray
contrast for at least 2 s.
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The following stimulus types were presented:

● “Full-field” contrast excursions of either maximal or minimal con-
trast for 3 s followed by full-field intermediate gray contrast for 3 s.
Stimulus conditions were not interleaved with a blank.

● Sinusoidal gratings moving in one of eight evenly spaced directions,
with full contrast, spatial frequency 1/30 cycles deg �1, and temporal
frequency 1 Hz.

● Edges of either maximal (light) or minimal (dark) contrast moving
in one of the cardinal directions at 30°/s.

● Ternary XT noise. Each frame was composed of a 1 � 12 pixel array
of rectangular pixels, each pixel measuring 60° � 5° so that the
stimulus spanned 60° � 60°. Each pixel was minimal, intermediate,
or maximal contrast with equal probability independent of all other
pixels. All pixel values were updated every 50 ms. Per experiment,
ternary XT noise explored either azimuth or elevation.

● Sinusoidal gratings moving in a cardinal direction or its opposite at
10° s �1, 25° s �1, 50° s �1, or 100° s �1, with full contrast, and tem-
poral frequency 1 Hz (1F). Per experiment, sinusoidal gratings ex-
plored either azimuth or elevation, matching the axis explored by
ternary XT noise.

Data processing. For each recording, drift of the specimen within the
imaging plane was modeled as a time series of Euclidean transformations
estimated frame-wise using a parallelized adaptation of Robust Align-
ment by Sparse and Low-rank Decomposition applied to the red channel
(Peng et al., 2012). Drift was corrected by applying the time series of
inverse transformations to the data. Across recordings, drift of the spec-
imen within the imaging plane was estimated per recording by applying
Robust Alignment by Sparse and Low-rank Decomposition to the mean
data frames of the within-frame corrected recordings. Drift across re-
cordings was then corrected by applying each inverse transformation to
all frames of its respective within-frame corrected recording. Experi-
ments that included any axial drift appreciable by visual inspection either
within a recording or across recordings were discarded.

Fluorescence time series F(t) were high-pass filtered with a cutoff pe-
riod of 150 data frames, or �10 s, averaged across pixels in the case of
regions of interest (ROIs), and then normalized relative to the baseline
fluorescence, F0, to obtain the following:

�F

F0
�

F	t
 � F0

F0
,

which is proportional to changes in calcium concentration. F0 was cal-
culated for each recording as the average fluorescence during the last few
frames of all presentations of the blank stimulus in the recording. If no
blank stimulus was presented, all stimulus conditions were used to cal-
culate a “cocktail” blank. To accommodate asynchronous stimulus pre-
sentation and data acquisition, �F/F0 responses for all trials were
converted to a stimulus-aligned time base before trial averaging.

For each stimulus condition si of a given stimulus type, the time series
response Rsi

	t
 was typically summarized by a single scalar value Rsi
, for

example, the maximum of the response, Rsi
� max Rsi

	t
. Tuning curves
refer to nonparametric maps between stimulus parameters and these
response metrics. For stimuli s� uniformly spaced about the circle, the
direction selectivity index (DSI) was computed as follows:

DSI � ��� Rs�
exp	i�


�
�

Rs�

�,
where Rs�

denotes the response to the stimulus s� moving in the direction
�. This DSI is a modification of the classical definition of circular vari-
ance, which was halved and then subtracted from 1 in order for a DSI of
0 to indicate no direction preference and a DSI of 1 to indicate responses
exclusively in the PD (Batschelet, 1981). The contrast selectivity index
(CSI) was computed as follows:

CSI �
RMAX � RNULL

RMAX � RNULL
,

where RMAX and RNULL denote, respectively, the maximal response
evoked by any stimulus condition, and the response evoked by the same
stimulus condition but with inverted contrast. Responsivity was assessed
by an ANOVA performed across single-trial tuning curves, including the
blank stimulus condition. Selectivity was assessed by an ANOVA per-
formed across single-trial tuning curves, excluding the blank stimulus
condition.

Identification and selection of ROIs. Based on raw fluorescence re-
sponses to sinusoidal gratings moving in one of eight evenly spaced di-
rections, a peakiness measure was calculated per pixel, as follows:

�	x, y
 � �� F � F0

F0 � �F�x,y,t
��

t

1.5

,

where �·�· denotes the average of the enclosed expression over the sub-
scripted variables. This measure is related to �F/F0, and is analogous to
previous peakiness measures (Ahrens et al., 2013) but for the weaker
nonlinearity used to emphasize excursions in fluorescence, and the ab-
solute value operation, which makes � sensitive to both positive and
negative excursions in fluorescence. The resulting peakiness pixel map
was thresholded by Otsu’s method (Otsu, 1979) to identify pixels eligible
for further analysis. In practice, this procedure had the effect of removing
background pixels where there was no tissue in the imaging plane.

Per pixel, direction tuning-curves of the 1F amplitude modulation and
phase offset of the response were derived from trial-averaged �F/F0 re-
sponses to sinusoidal gratings moving in one of eight evenly spaced di-
rections. These two eight-point tuning curves were then transformed
into a 16-dimensional functional signature as follows:

	R0
amplitude cos R0

phase, R0
amplitude sin R0

phase, …, R270
amplitude cos R270

phase,

R270
amplitude sin R270

phase


where R�
amplitude and R�

phase denote the 1F amplitude modulation and phase
offset, respectively, of the response to a sinusoidal grating moving in the
direction �. Based on this functional signature, the Euclidean distance
between each pair of pixels was computed. Average-linkage agglomera-
tive hierarchical clustering (Rokach and Maimon, 2005) of pixels based
on these distances with an empirically chosen distance threshold, 0.5,
yielded an initial set of ROIs. Occasionally, a ROI was largely if not
completely surrounded by another ROI. In such events, the surrounding
and surrounded ROIs were merged, although ROIs that had poor (cor-
relation �0.3) or widely varying (variance �0.015) within-ROI pixel-
pixel correlation were subsequently discarded. ROIs were also discarded
based on their total size (�5 or �120 pixels), the size of their discon-
nected components (�3 pixels), and the number of their disconnected
components (�8 regions). In practice, these criteria excluded morpho-
logically unrealistic ROIs.

To isolate T5 single units, ROIs were further excluded from further
analysis if their response properties did not match those of known T5
single units. Because T5 responds poorly to full-field contrast excursions
(Maisak et al., 2013; Fisher et al., 2015a), ROIs were excluded from fur-
ther analysis if they were responsive ( p � 0.01) to this stimulus. Cluster-
ing pixels in a space of response properties guarantees that each cluster is
defined by a response profile that is shared by all constituent pixels, but it
does not guarantee that this response profile corresponds to a single
unit. For example, a cluster could be defined by the mixture of re-
sponse properties of multiple T4 and multiple T5 single units. T4 and
T5, however, are strongly contrast selective for opposite contrasts.
ROIs were excluded from further analysis if they were not comparable
with T5 single-cell clones in terms of their contrast and direction
selectivity index (CSI �0.6, DSI �0.6), which were computed based
on maximum responses and 1F response amplitudes, respectively.

To avoid the analysis of multiple “duplicate” ROIs that correspond to
the same T5 single unit, ROIs were clustered using single-linkage ag-
glomerative hierarchical clustering (Rokach and Maimon, 2005) on the
correlation between their spatiotemporal receptive fields (STRFs). Clus-
ters were formed by cutting the dendrograms where the maximum intra-
cluster correlations was �0.9, a conservative, empirically chosen

8080 • J. Neurosci., August 3, 2016 • 36(31):8078 – 8092 Leong et al. • Algorithm for Direction Selectivity in Drosophila



threshold. From each cluster, only the ROI with the highest SNR was
selected for further analysis.

Receptive-field mapping. Responses to ternary noise were analyzed in
the first instance by calculation of the fluorescence-weighted average
stimulus, which we refer to as the STRF. Let r(t) be the �F/F0-normalized
response, s(x, t) be the value of the stimulus at position x at time t. We
computed the STRF as follows:

a	x, �
 �
1

T � � �t��

T

r	t
 s	x, t � �
.

To compactly describe and denoise the STRFs, we fit difference of Gauss-
ians (DoG) models with one positive and one negative component to
each STRF. We initialized DoG fits with Gaussian components at the
location of the minimum and maximum of the STRF. The initial widths
were chosen to be 10° in space and 250 ms in time, with an angular
orientation of 0 radians. To improve robustness to initialization, we fit
models over 10 random perturbations of the initial parameters and chose
the best-fitting model based on the Euclidean distance to the STRF.

Statistics of the STRF were computed from the linear filter corre-
sponding to the best DoG approximation. Peak amplitudes were taken to
be the maximum and minimum of the DoG filter. The DoG filter was
split into an ON and OFF subfield by including the top 80% of positive
and negative values, respectively. Temporal onset and spatial and tem-
poral extents were computed for each subfield separately. The centroid of
each subfield was used as the peak, and the slope of the axis between them
used as the ON-OFF tilt, in units of ° s �1. The tilts of the subfields were
computed similarly as the slopes of their major axes.

Modeling. We modeled the mapping from stimulus to �F/F0 as an LN
calcium response model followed by an LN indicator dynamics model.
The first neuronal stage, the linear filter of the neuron, identifies a vector
in XT stimulus space along which the neuron is sensitive. The second
neuronal stage, a nonlinearity, enables otherwise linearly reinforcing or
antagonizing inputs to enhance or suppress one another. The third stage,
a linear filter over time, accounts for the delay of the binding kinetics of
the calcium indicator. The final stage, a nonlinearity, reflects the coop-
erativity of calcium binding to the indicator.

The cell’s linear filter, w(x, �), depends on both the spatial location and
temporal offset of the stimulus. The output of the linear filter is passed
through a time-independent nonlinearity f to yield the time-dependent
prediction of intracellular calcium concentration,

c	t
 � f��
��1

Tstim �
x�1

nx

w	x, �
 s	x, t � �
�.

The predicted intracellular calcium concentration is then mapped to
predicted �F/F0 through a temporal convolution with the filter, v, and an
additional nonlinearity g, as follows:

r	t
 � g� �
��1

Tcalcium

v	�
 c	t � �
�.

We discretized visual space into 12 bins each with an extent of 5° to match
the spatial resolution of the ternary noise stimulus. Time was discretized
into 10 ms bins, matching the stimulus frame rate. The linear filter, w(x,
�), covers all 12 spatial bins, and extends 1 s (100 bins) in time containing
a total of 1200 parameters.

The neuron nonlinearity f was parameterized as a smoothed half-wave
rectifying nonlinearity raised to a power as follows:

f	x
 � c log	1 � exp	ax � b

k � d.

We constrained a, c, d 	 0, so that f(x) 	 0, allowing us to interpret the
output of f as the predicted calcium response. We also explored a more
flexible parameterization for f as a linear combination of Gaussian basis
functions but found that it yielded worse performance.

The temporal convolution used to model the indicator dynamics was a
difference of exponentials normalized to sum to 1 as follows:

v	t
 �

exp�� t

�on
� � exp�� t

�off
�

�
t��1

Tcalcium �exp�� t�

�on
� � exp�� t�

�off
��.

The calcium nonlinearity was modeled using a polynomial with a learned
exponent as follows:

g	y
 � yh � f.

Because of the nonconvex nature of the optimization problem, fits were
highly sensitive to the initial parameters. To compensate for this sensi-
tivity, we carefully initialized the parameters of our model. The linear
filter of our model was initialized to the STRF, and additional parameters
were initialized to the following: �on � 5 ms, �off � 300 ms,
a � 1, b � 0, c � 1, d � 0, k � 2, h � 2.3, e � 1, f � 0.

Models were trained to minimize the mean squared error between the
predicted and true responses. Because of the large number of parameters
and small amount of data, we used additional regularization to prevent
models from overfitting the training dataset. To encourage connected-
ness and sparsity in the cell’s linear filter, we used a penalty combining
total variation (TV) and the �1 norm, respectively (Chambolle et al.,
2010), as follows:


time�
x,�

�w	x, �
 � w	x, � � 1
 � � 
space�
x,�

�w	x, �
 � w	x � 1, �
�

� 
1�
x,�

�w	x, �
�.

Because of the anisotropic resolution in spacetime, we optimized over
different weightings for the spatial and temporal components of the TV
penalty, 
space and 
time. These weightings and additional hyperparam-
eters were optimized over an additional held-out set of noise for one ROI,
and then used across all ROIs.

Models were fit using only the responses to the ternary noise stimulus,
with the first minute of the ternary noise stimulus held out for validation.
We validated the models by comparing the measured and predicted re-
sponses to both held-out ternary noise and sinusoidal grating motion
stimuli. The models used to predict the sinusoidal grating motion stimuli
were trained exclusively on the ternary noise stimulus without ever being
exposed to a structured motion stimulus.

Model-fitting code was implemented in Python using Theano and the
Lasagne deep-learning framework (Bergstra et al., 2010; Bastien et al.,
2012). Models were fit using minibatch optimization with the Adam
optimization algorithm (Kingma and Ba, 2014) with a learning rate op-
timized through cross-validation, �1 � 0.9, �2 � 0.999, and
� � 10�8. We performed 500 full passes through the dataset. Training
datasets were split contiguously in time to form 10 equally sized
minibatches, and parameters were fit using all 10 minibatches.

Results
The spatiotemporal receptive field of T4 and T5
single-cell clones
T4 and T5 extend light- and dark-edge selective pathways from
the medulla and lobula neuropils into the lobula plate (Fig. 1A)
(Fischbach and Dittrich, 1989; Maisak et al., 2013). To study the
algorithm for direction selectivity in T4 and T5, we recorded the
visually evoked calcium dynamics of T4 and T5 using in vivo
two-photon microscopy of the genetically encoded calcium indi-
cator GCaMP6f, which we targeted to these cells using the
R42F06 driver line (Maisak et al., 2013; Fisher et al., 2015b).
R42F06 drives strong expression in most T4 and T5 neurons,
revealing strongly contrast- and direction-selective responses in
T4 and T5 axon terminals in the lobula plate (Maisak et al., 2013).
However, the neuronal processes of T4 and T5 are fine and inter-
digitating, such that the axon terminals of individual cells are not
clearly segregated from one another in the dense R42F06 expres-
sion pattern (Fig. 1B). To achieve single-neuron resolution of T4

Leong et al. • Algorithm for Direction Selectivity in Drosophila J. Neurosci., August 3, 2016 • 36(31):8078 – 8092 • 8081



and T5, we first isolated single-cell clones using a stochastic Flp-
out method, which limited expression of GCaMP6f to a sparse
subset of the R42F06 expression pattern (Fig. 1C) (Gordon and
Scott, 2009; Chen et al., 2013; Gruntman and Turner, 2013;
Fisher et al., 2015b). From the sparsened R42F06 expression pat-
tern, we identified visually responsive single-cell clones by their
periodic responses to moving sinusoidal gratings. Many single-
cell clones were strongly contrast and direction selective, consis-
tent with previously reported tuning properties of T4 and T5 (Fig.
2B–E) (Maisak et al., 2013). Of 49 single-cell clones from eight
flies in which direction selectivity was assessed, 25 had a DSI of
�0.6, which we defined to be strongly direction selective. Of 35
single-cell clones from six flies in which edge-contrast selectivity
was assessed, 13 were essentially completely light-edge selective
(CSI � 0.6; see Materials and Methods), consistent with their
being T4 single-cell clones, whereas 13 were essentially com-

pletely dark-edge selective (CSI � 0.6; see Materials and Meth-
ods), consistent with their being T5 single-cell clones. Nine
single-cell clones did not exceed our contrast selectivity threshold
(CSI  0.6).

To obtain the STRFs of T4 and T5 single-cell clones, we re-
corded their responses to one-dimensional spatiotemporal (XT)
ternary noise (Fig. 1D; see Materials and Methods). This stimulus
comprised a series of bars, each 5° wide and with one of three
contrasts (�1, 0, 1) chosen randomly every 50 ms. We then com-
puted the average spacetime history of the stimulus preceding the
neural response weighted by the amplitude of the response, an
analysis known as reverse correlation that yields the STRF (Chi-
chilnisky, 2001). When the spatial axis of the stimulus was aligned
with the axis of the PD, across four flies 9 of 10 visually respon-
sive single-cell clones had STRFs that exhibited two oppositely
signed subfields, with both subfields tilted to have slopes cor-
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Figure 1. Tilted organization of ON and OFF subfields in the spatiotemporal receptive fields of genetically isolated T4 and T5 single-cell clones. A, Schematic of the functional anatomy of
motion-processing pathways in the fly. Photoreceptors in the retina (Re) synapse (terminated line segments) onto second-order interneurons in the lamina (La), which synapse onto third-order
interneurons in the medulla (Me), which synapse onto T4 dendrites in the medulla and T5 dendrites in the lobula (Lo). T4 and T5 send their axons into the lobula plate neuropil (LP), where their axons
are organized retinotopically across one axis and into four layers according to their cardinal direction preferences. Light and dark edge pathways shown in red and blue, respectively. Arrows indicate
PD. B, Illustration of the morphology of T4 and T5 single cells, indicating the approximate field of view (FOV) used for imaging in the lobula plate neuropil. C, FOV containing single-cell clones isolated
from the R42F06 expression pattern by stochastic flp-out. Top, Mean fluorescence image. Scale bar, 10 �m. Bottom, Hue-saturation value (HSV) map of the same FOV calculated from responses
evoked by sinusoidal gratings moving in eight evenly spaced directions. For each pixel, hue indicates the PD (legend), saturation the DSI, and value the response amplitude (see Materials and
Methods). Axons terminals from three different neurons, labeled, are seen in this FOV. The LP lies between the two solid white lines. White dashed lines indicate LP layers. Two T4 or T5 cell bodies
(white arrowheads) are also visible in the FOV. D, Two frames of an XT noise stimulus. Each frame is composed of twelve 5° � 60° bars. The contrast of each bar is updated every 50 ms to be black,
gray, or white with equal probability. E, STRFs of T5 single-cell clones for which the spatial axis of the stimulus was aligned with the axis of the PD. F, STRFs of T4 single-cell clones for which the spatial
axis of the stimulus was aligned with the axis of the PD. E, F, All STRFs exhibit two oppositely signed subfields. Both subfields are tilted to have slopes corresponding to object motion in the PD. The
spatiotemporal offset between the subfields corresponds to object motion in the ND. G, Top, Schematic of an STRF exhibiting a single subfield oriented along the axis corresponding to PD motion.
This STRF enhances responses to PD motion. Bottom, Schematic of an STRF exhibiting two subfields of opposite sign oriented along the axis corresponding to ND motion. This STRF suppresses
responses to ND motion. Both STRFs have the same PD. E–G, Positive values (red) indicate points in spacetime where contrast increments evoke a positive response (ON), and negative values (blue)
indicate points in spacetime where contrast decrements evoke a positive response (OFF). Color map is the same across all STRFs. Inset, Arrows indicate the PD.

8082 • J. Neurosci., August 3, 2016 • 36(31):8078 – 8092 Leong et al. • Algorithm for Direction Selectivity in Drosophila



A

B

D

C

E

F

Figure 2. Isolation of T5 single units based on their functional properties. A, FOV of the R42F06 expression pattern. Left, Mean fluorescence image. Scale bar, 10�m. Middle, Hue-saturation value (HSV) map
of the same FOV calculated from response evoked by sinusoidal gratings moving in eight evenly spaced directions. Color map as in Figure 1C (bottom). Right, Functionally isolated ROIs derived from the same FOV
(see Materials and Methods). Only ROIs that were morphologically realistic and functionally indistinguishable from single-cell clones in terms of their contrast and direction selectivity were considered further,
here colored as in Figure 1C (bottom). All other ROIs were discarded, here colored gray. B, Response time courses of functionally isolated single units and genetically isolated single-cell clones to light and dark
edges moving in the cardinal directions. Gray represents single-trial response time courses. Black represents trial-averaged response time courses. Each shaded epoch corresponds to one stimulus condition as
indicated schematically below each shaded region. Top, Functionally isolated single units, indicated in A (right). Bottom, Single-cell clones from a different fly. Scale bars indicate 2.5 s. C, Distribution of CSI for
functionally isolated single units (white) and genetically isolated single-cell clones (black). CSIs of single units and single-cell clones from B indicated with white and black arrowheads, respectively. Sample size
for functionally isolated single units: N�37 single units from 9 flies. Sample size for genetically isolated single-cell clones: N�35 single-cell clones from 6 flies. D, For the same functionally isolated single units
and genetically isolated single-cell clones as in B, response time courses to sinusoidal gratings moving in eight evenly spaced directions. Conventions as in B. E, Distribution of DSI for functionally isolated single
units(white)andgeneticallyisolatedsingle-cellclones(black).DSIsofsingleunitsandsingle-cellclonesfromD indicatedwithwhiteandblackarrowheads,respectively.Samplesizeforfunctionallyisolatedsingle
units as in C. Sample size for genetically isolated single-cell clones: N � 49 single-cell clones from 8 flies. F, STRFs of T5 single units for which the spatial axis of the stimulus was aligned with the axis of the PD
(arrow). Color map is as in Figure 1E–G and is the same across all four STRFs. All STRFs exhibit two oppositely signed subfields. Both subfields are tilted to have slopes corresponding to object motion in the PD. The
spatiotemporal offset between the subfields corresponds to objection motion in the ND.

Leong et al. • Algorithm for Direction Selectivity in Drosophila J. Neurosci., August 3, 2016 • 36(31):8078 – 8092 • 8083



responding to object motion in the PD. Moreover, the two
subfields were spatiotemporally offset along an axis corre-
sponding to object motion in the ND (Fig. 1 E, F ). In the
STRFs of four single-cell clones, the more temporally offset, or
delayed, subfield was OFF and the nondelayed subfield was
ON. These were presumably T4 light-edge preferring single-
cell clones. In the STRFs of five single-cell clones, the delayed
subfield was ON and the nondelayed subfield was OFF. These
were presumably T5 dark-edge preferring single-cell clones.
The organization of these STRFs was specific to the spatial axis
of the PD. For the 13 single-cell clones that were visually re-
sponsive but whose STRFs were mapped orthogonally to the
axis of PD motion, the STRFs were weak and disorganized
(data not shown), consistent with the known orientation se-
lectivity of T4 and T5 (Fisher et al., 2015b).

One prominent feature of the STRFs of T4 and T5 single-cell
clones is that they are bilobed, with two subfields of opposite sign
and with the axis connecting the centers of the two oppositely
signed subfields aligned with the ND. Visual features moving in
the PD contact only one subfield at a time, whereas features mov-
ing in the ND simultaneously contact both oppositely signed
subfields, resulting in mutual cancellation of the subfield activa-
tions. Thus, the organization of the STRF contributes to direction
selectivity by suppressing responses to ND motion (Fig. 1G, bot-
tom). In general, there is ambiguity in the interpretation of sub-
field sign relative to the contrast polarity of the stimulus. For
example, an OFF subfield may be due to depolarizing responses
to contrast decrements (OFF “facilitation”), or it may be due to
hyperpolarizing responses to contrast increments (ON “suppres-
sion”), or both. However, dark edges moving in the PD evoke
depolarizing transients in T5 (Maisak et al., 2013), demonstrating
that the stimulus-response relationship underlying the OFF sub-
field includes OFF facilitation. In order for T5 to be direction-
selective to moving dark edges, and for T5 not to respond to
full-field contrast steps or wide, dark stimuli (Fisher et al., 2015a),
the ON subfield must necessarily reflect OFF suppression. We
have also observed that T5 depolarizes in response to moving
dark stripes as well as moving light stripes, suggesting that the ON
subfield may also reflect ON facilitation under some conditions
(data not shown).

A second prominent feature of the STRFs of T4 and T5 single-cell
clones is that their subfields are tilted in spacetime along the PD.
Visual features moving in the PD have spacetime trajectories that
align more perfectly with individual subfields than features moving
in the ND. Thus, this spacetime tilt contributes to direction selectiv-
ity by enhancing responses to PD motion (Fig. 1G, top). Further,
because the inputs to T4 and T5 are not themselves direction selec-
tive, there cannot be a one-to-one correspondence between tilted
subfields of the STRF and non–direction-selective input pathways.
Each direction-selective subfield in the STRF must receive con-
tributions from multiple non–direction-selective input pathways.

T4 and T5 single units can be isolated from mixed recordings
based on functional properties
While functional imaging of single-cell clones enabled the iso-
lation of single units, this approach was hampered by low
throughput and low signal-to-noise ratio. In the majority of
flies, the GCaMP6f expression pattern was either too dense to
reveal single-cell clones, or so sparse or weak that no single-
cell clone could be found that responded to the visual stimu-
lus. We developed a method to isolate many single T4 and T5
neurons from within the dense expression pattern of the
R42F06 driver, thereby enabling us to describe the STRFs of

many T4 and T5 single units quantitatively. Although the
morphological segmentation of the R42F06 expression pat-
tern is challenging, the exquisite functional organization of
the fly optic lobe suggested the possibility of resolving single
units by functional segmentation of anatomically dense, even
non-cell type specific, expression patterns. Both T4 and T5
axon terminals are organized into retinotopic columns and
the four direction-selective layers of the lobula plate neuropil
(Figs. 1A, 2B) (Maisak et al., 2013). Moreover, T4 is strongly
light-edge preferring, whereas T5 is strongly dark-edge prefer-
ring (Maisak et al., 2013; Fisher et al., 2015b). Thus, even
though the morphology of T4 and T5 essentially prohibits the
isolation of single units based on the R42F06 expression pat-
tern alone (Fig. 2A, first and second panels), each neuron
exhibits a uniquely identifying combination of direction pref-
erence, contrast preference, and spatial receptive field.

We isolated T4 and T5 single units by probing these func-
tional properties using moving sinusoidal gratings presented
over eight evenly spaced directions (Fig. 2A, third panel).
These gratings evoke periodic responses in T4 and T5, with the
amplitude of the response reflecting direction preference, and
the phase of the response reflecting contrast preference and
spatial receptive field (Fig. 2D). Each T4 and T5 single unit has
a uniquely identifying tuning profile comprised of these eight
amplitudes and phases. Clustering of pixels based on their
tuning profiles yielded ROIs. Each ROI is uniquely character-
ized by its direction preference, contrast preference, and spa-
tial receptive field, all shared across its constituent pixels (Fig.
2A, third panel; see Materials and Methods). In the R42F06
expression pattern, the vast majority of pixels include a mix-
ture of multiple T4 and T5 single units. ROIs derived from
these pixels, despite having a uniquely identifying tuning pro-
file shared across pixels, do not correspond to T4 or T5 single
units. Such multiunit ROIs were poorly contrast selective, in-
consistent with the strong contrast selectivity of T4 and T5
(Fig. 2 B, C). Based on the known morphology and functional
properties of T4 and T5, we applied a series of filtering steps
(see Materials and Methods) to recover ROIs that were
morphologically realistic and functionally indistinguishable
from single-cell clones in terms of their contrast and direction
selectivity (Fig. 2B–E). We refer to such functionally isolated
and validated ROIs as single units. Although we recovered
both light-edge preferring T4 and dark-edge preferring T5
single units, T5 single units were far more abundant (13 T4
single units and 63 T5 single units from 9 flies), likely because
of the T5-bias of the R42F06 expression pattern (Fisher
et al., 2015b). We focused subsequent analyses on T5 given
the relatively large number of T5 single units that we
identified.

The spatiotemporal receptive field of functionally isolated T5
single units
With the spatial axis of the stimulus aligned with the axis of the
PD, 37 T5 single units that we functionally isolated replicated
the STRF organization of T5 single-cell clones (Figs. 1E, 2F ).
We note that T5 single units were functionally isolated based
on their responses to non-noise stimuli. In contrast, the STRFs
of these units depend only on their responses to noise stimuli.
Therefore, the similarity of the STRFs of functionally isolated
T5 single units to those of the genetically isolated T5 single-
cell clones is a nontrivial check of our functional isolation
procedure.
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We further characterized the spatiotemporal organization of
T5 STRFs by fitting them with differences of Gaussians (Fig. 3A),
which provided an accurate parametric description (Fig. 3B). The
parameters of the fit did not vary substantially across cells, con-
firming that all T5 single units share a common STRF organiza-
tion. In this organization, the centers of the two subfields were
offset in space by �12° (Fig. 3C). The OFF subfield was spatio-
temporally more compact with a faster and higher peak, whereas
the ON subfield extended further back in time and had a more
delayed and broader peak (Fig. 3D–H). Each individual subfield
was tilted along a spatiotemporal axis consistent with the trajec-
tory of a feature moving in the PD of the unit (Figs. 1E,F, 2F,

3I–L). Furthermore, the centers of mass of the two subfields were
separated along a spatiotemporal axis consistent with the trajec-
tory of a feature moving in the ND of the unit (Figs. 1E,F, 2F,
3I–L). Again, consistent with expectations based on the orienta-
tion selectivity of T5 (Fisher et al., 2015b), when the spatial axis of
the stimulus was orthogonal to the axis of the PD, 26 T5 single
units had STRFs that were weak and disorganized (Fig. 4).

An elaborated LN model of the T5 stimulus-response
function
The T5 STRF, as a linear approximation of the stimulus-response
function of T5, explained little stimulus-evoked variance in the
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Figure 5. The LNCN model captures T5 responses. A, The LNCN model architecture consists of a sequence of four components, shown from left to right: a linear filter that integrates
contrast inputs over spacetime, a static nonlinearity, a linear convolution of the calcium signal over time, and a nonlinearity reflecting the cooperativity of indicator-calcium binding. The
linear stimulus filter shown is the average of the linear stimulus filters for 37 T5 single units aligned in space (see Materials and Methods). For all other components of the model, the
average is in black, and values for individual models are in gray. Insets, Distributions of the decay time (tauoff) for the convolutional filter, and the Hill coefficient corresponding to
indicator-calcium binding cooperativity. B, The experimentally observed fluorescence response of a T5 single unit (black) and the fluorescence response predicted by the respective model
(blue) when probed with a held-out noise stimulus. The linear stimulus filter for this example is the leftmost unit in Figure 2F. C, Comparison of the experimentally observed fluorescence
response (black) with responses predicted by the LNCN model (blue), the linear prediction based on the measured STRF alone (red), and a LN model without an account of calcium
indicator dynamics (green). D, Comparison of model performance as measured by the correlation coefficient with data on training noise versus held-out noise. E, Top, Linear filters from
LNCN models of four representative T5 ROIs (from Fig. 2F ). Color map is as in Figure 1E–G and is the same across all four linear filters. Arrows indicate the PD. Bottom, STRFs computed
from the responses of the LNCN models to noise. Color map is as in Figure 1E–G and is the same across all four STRFs.
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T5 response, with a correlation coefficient on held-out noise of only
0.38 � 0.01 (mean � SEM). To capture nonlinearities in the neuro-
nal calcium response and to further isolate the sensory encoding
transformation reflected in the T5 response from indicator-induced
transformation of the calcium signal, we modeled the stimulus-
evoked T5 calcium response as an LN model, a linear stimulus filter
(L) followed by a static nonlinearity (N), feeding into a temporal
convolution (C) and a static nonlinearity (N) that reflect the kinetics
of cooperative GCaMP6f-calcium binding (Fig. 5A) (Kato et al.,
2014). We trained LNCN models to predict the response of T5 single
units to XT noise. These models explained a considerable fraction of
stimulus-evoked variance in the T5 response to XT noise held out
from the training set (correlation of 0.56 � 0.02; Fig. 5B–D). In these
models, parameters corresponding to the calcium-binding kinetics
and cooperativity of GCaMP6f were consistent with corresponding
in vitro measurements (Chen et al., 2013), providing ground-truth
validation of the stimulus-response model (Fig. 5A). LNCN models
performed better than the best LN models (correlation of 0.43 �
0.01), in large part by better matching the time course of fluores-
cence decay (Fig. 5C).

Echoing the T5 STRF, the linear stimulus filter of the LNCN
model of T5 exhibited two spatiotemporally offset, oppositely
signed subfields, with both subfields tilted to have slopes corre-

sponding to object motion in the PD (Figs. 1E,F, 2F, 3I–L, 5E). As
before, the OFF subfield was spatiotemporally more compact,
whereas the ON subfield extended further across space and back
in time (Figs. 5E, 6). The neuronal nonlinearity was half-wave
rectifying and expansive, and was well approximated by a cubic
polynomial (Fig. 7). Alternative choices for the parameterization
of the nonlinearity diminished the predictive performance of the
models but retained the characteristic structure of the linear
stimulus filter (data not shown). Thus, a nonlinear elaboration of
the spatiotemporal organization of the T5 STRF, augmented by a
model of signal transduction by GCaMP6f, serves as a highly
predictive stimulus-response model of T5.

The LNCN model quantitatively accounts for the responses of
T5 to motion stimuli
If the LNCN model captures fundamental properties of the
algorithm by which the fly EMD generates direction-selective
responses, then the model should reproduce T5 responses to di-
rectional motion stimuli. In addition to spatiotemporal noise, we
probed a subset of the T5 single units with classical motion stim-
uli. For 30 T5 single units from 7 flies, up to an overall scaling
factor the LNCN model explained a considerable fraction of
stimulus-evoked variance in the T5 response to moving sinusoi-
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dal gratings (Fig. 8A), quantitatively re-
producing the responses of T5 to a
diversity of 10 stimulus conditions (aver-
age correlation coefficient, 0.87 � 0.01).
The LNCN model of T5 predicted the spa-
tial frequency tuning of T5, as well as its
strong direction selectivity across the
range of spatial periods that we probed
(Fig. 8B). Critically, the LNCN model of
T5 was a highly accurate predictor of the
PD across the range of spatial periods that
we probed (Fig. 8C). To assess the ability
of the LNCN model of T5 to predict not
only the PD, but the degree of direction
selectivity, we quantified direction tuning
with a DSI. A DSI of 0 indicates no direc-
tion preference, whereas a DSI of 1 indi-
cates responses exclusively in the PD. The
LNCN model quantitatively predicted
DSI in the majority of conditions that we
studied, although it underpredicted DSI
by an increasing margin at the two larg-
est spatial periods that we studied, 100°
and 250° (Fig. 8D). This underpredic-
tion of DSI resulted from a slight over-
prediction of the responses to fast
moving, large spatial period ND stimuli.
Because our stimulus screen subtended
a relatively limited visual angle, these
large spatial period, low spatial fre-
quency stimuli behaved similarly to
“full-field” contrast excursions, which
are known to drive T4 and T5 poorly. Importantly, we note
that LNCN models were trained only to predict the response of
T5 to noise stimuli. Thus, their ability to also predict the re-
sponse to a diversity of gratings with different directions and
speeds constitutes a remarkable level of generalization across
stimulus types. Overall, we conclude that the LNCN model
does indeed capture fundamental properties of the direction
selectivity algorithm of the fly EMD, as evidenced by the mo-
del’s ability to quantitatively predict T5 responses to moving
sinusoidal gratings, a classical motion stimulus.

T5 performs multiple spatiotemporal correlations that
support direction and contrast selectivity
Moving objects induce not only second-order correlations at two
neighboring points in spacetime, but also higher-order spatio-
temporal correlations. Third-order correlations contain infor-
mation about the motion of natural scenes, and stimuli with only
third-order spacetime correlations can induce motion percepts
in both flies and humans (Hu et al., 2010; Fitzgerald et al., 2011;
Clark et al., 2014; Nitzany and Victor, 2014; Fitzgerald and Clark,
2015). To understand how the LNCN model exploits second- and
third-order spatiotemporal correlations to achieve direction and
contrast selectivity, consider an idealized linear stimulus filter that
combines stimulus contrast at four points in spacetime (Fig. 9A),
two points from within the ON subfield of the original filter having
positive weight, and two points from within the OFF subfield having
negative weight. If the model response is generated by a weighted
sum of stimulus contrast at these four points, passed through a poly-
nomial nonlinearity with linear, quadratic, and cubic terms, then the
resulting computation can be organized into a sum of signed multi-

plications, or correlations, of stimulus contrasts at one, two, and
three points in spacetime (Fig. 9B–D).

The linear term in the polynomial corresponds to a weighted sum
of stimulus contrasts at the four points in spacetime (Fig. 9B). Com-
putationally, this is a linear direction-selective cell, whose filter is
the idealized linear stimulus filter. The quadratic term leads to two
classes of direction-selective second-order correlators and a class of
non–direction-selective but contrast-selective correlators. ON-ON
and OFF-OFF correlators at two points in spacetime originating
from a single subfield of the original filter (Fig. 9C, top) compute the
positive product of stimulus contrast at two points in spacetime
along the PD of the cell. ON-OFF correlators at two points in space-
time originating from distinct subfields of the original filter, aligned
along the ND of the cell (Fig. 9C, middle), compute the negative
product of stimulus contrast at two points in spacetime along the
ND. ON-OFF correlators at two points in spacetime aligned along
either the temporal or spatial axis (Fig. 9C, bottom) are not direction
selective but are contrast selective. The cubic term results in four
third-order correlators, involving signed products of stimulus con-
trast at three spacetime points arranged in spatially or temporally,
diverging or converging patterns (Fig. 9D). The divergent correla-
tors, by having one point in the OFF subfield, compute the negative
product, whereas the convergent correlators, by having two points in
the OFF subfield, compute the positive product. Whereas the linear
and quadratic terms of the nonlinearity are relatively large, the cubic
term is smaller, indicating a smaller contribution of third-order cor-
relations to the response of the LNCN model of T5.

Discussion
To characterize the computational algorithm underlying the
emergence of direction selectivity in the fly EMD, we studied the

BA

C D

Figure 7. The rectified neuronal nonlinearity is well fit by polynomials of order 	 3. A, Average (black) and individual (gray)
neuronal nonlinearities from fits to 37 T5 ROIs from 9 flies. B, Distribution of softplus exponents for neuronal nonlinearities (see
Materials and Methods). C, Best-fitting polynomials of order 1, 2, 3, and 4 to the average neuronal nonlinearity of LNCN models. D,
Maximum deviation of nonlinearity from the best-fitting polynomial of orders 1– 4.
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stimulus-evoked activity of key computational intermediates, T4
and T5, the most upstream direction-selective neurons in Dro-
sophila. Our results from this study add to the understanding of
motion detection in the fly in three ways. First, we measured the
STRFs of T4 and T5 and found them to be organized into two
subfields of opposite sign, spatiotemporally offset and obliquely
oriented in spacetime. Because the two subfields are oppositely
signed and spatiotemporally offset along the spacetime direction
corresponding to the ND, responses to motion in the ND are
suppressed through mutually cancelling interactions. This sup-
pression corresponds exactly to the algorithmic strategy for di-
rection selectivity used by the Barlow–Levick detector in the
vertebrate retina (Barlow and Levick, 1965). By contrast, motion
in the PD aligns with each subfield, creating mutually enhancing
interactions that can be further amplified by downstream non-
linearities. This enhancement corresponds to the algorithmic
strategy used by the HRC. Thus, T5 incorporates the essential
algorithmic strategies used by both the HRC and the Barlow–
Levick detector. Second, we found, using an LN stimulus-
response model, that the combination of the T5 STRF and a cubic
nonlinearity predicts the responses of T5 to behaviorally relevant
motion stimuli. The cubic nonlinearity enables our model of T5

to detect specific first-, second-, and
third-order spatiotemporal correlations
in the stimulus, discussed below. Third,
our results highlight the crucial influence
of input pathway filtering properties in
generating T5 direction selectivity. As we
will discuss, the combination of inputs
that have center-surround, temporally bi-
phasic receptive fields yields a T5 recep-
tive field that contains two subfields of
spatiotemporal contrast sensitivity. These
subfields do not correspond in a one-to-
one manner with T5 inputs; multiple in-
puts contribute to each subfield, with the
temporal dynamics and spatial structure
of the inputs allowing single inputs to
contribute differently signed signals at
different spacetime locations.

Complementary genetic and functional
approaches to isolating single units for
calcium imaging
Essential to our characterization of the T5
STRF was the isolation of T5 single-unit
responses. To meet this requirement, we
used complementary genetic and func-
tional methods. Stochastic Flp-out meth-
ods are a well-known approach to labeling
and recording from single cells (Gordon
and Scott, 2009; Gruntman and Turner,
2013; Fisher et al., 2015a). However, such
methods typically modulate both the ex-
tent and the level of gene expression, lim-
iting their utility, because the genetic
effectors used are often affected by protein
perdurance. Consequently, functional
imaging of sparse neuronal subsets de-
rived by stochastic Flp-out is often ham-
pered by both low throughput and low
signal-to-noise ratio. We developed a
functional method to isolate stronger

single-unit responses. Each T4 and T5 neuron is identifiable by a
unique functional profile: direction preference, contrast prefer-
ence, and spatial receptive field. By mapping these functional
properties across a dense expression pattern, we could locate and
extract high SNR activity due to single neurons. In previous stud-
ies using calcium imaging in vivo, the segmentation of ROIs was
either performed manually (Euler et al., 2002; Wang et al., 2003)
or based on morphological priors about ROIs (Ohki et al., 2005;
Mank et al., 2008). More recent attempts to extract signals from
dense functional imaging datasets have leveraged general func-
tional priors (Mukamel et al., 2009; Pnevmatikakis et al., 2016).
Here we demonstrate that genetically isolated single-cell record-
ings can provide highly specific functional priors that can guide
the segmentation of high SNR ROIs from dense functional imag-
ing datasets. We expect that this methodological advance will be
widely applicable in genetic model organisms.

Understanding motion-processing pathways in flies
In flies as in humans, moving light edges and moving dark edges
are detected by separate circuits (Joesch et al., 2010; Clark et al.,
2011, 2014; Maisak et al., 2013; Fisher et al., 2015b). Before the
present study, behavioral measurements and physiological re-
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cordings demonstrated that the first direction-selective neurons
in the fly, T4 and T5, are selective for moving edges of specific
polarity, but the full repertoire of contrast comparisons made by
these neurons was unknown (Maisak et al., 2013; Fisher et al.,
2015b). In T5, we identify a single neuronal substrate that com-
putes the signed, weighted sum of up to 11 correlators of orders 1,
2, and 3, indeed all possible individual dark-edge specific contrast
comparisons that the fly can detect, as demonstrated in previous
studies of either downstream neurons or behavior (Clark et al.,
2011, 2014; Eichner et al., 2011; Haikala et al., 2013; Joesch et al.,
2013). When a dark edge moving along the PD crosses the STRF
of the LNCN model (Fig. 5), the output of every one of these
correlators is positive, yielding a very large summed response. On
the other hand, for an identically moving light edge, the second-
order correlators produce the same positive output, but the odd
order correlators produce negative outputs, suppressing the re-
sponse. For a dark edge moving in the ND, the linear term be-
comes zero and the outputs of the second-order and temporal

third-order correlators become negative, again suppressing the
response. Thus the core features of the LNCN model of T5
provide a remarkably simple and robust way to compute the sum
of multiple correlators with the appropriate signs to be both di-
rection and contrast selective for moving dark edges. Although
we have not directly modeled T4 responses, our measurements of
the STRF of T4 suggest that the moving light-edge pathway uti-
lizes the same correlational structures as the moving dark-edge
pathway, but with oppositely signed inputs.

The contribution of input pathway filtering properties, and
likely parallels with vertebrate vision
Each of the four major input cell types immediately presynaptic
to T5 has been shown to exhibit a center-surround, temporally
biphasic receptive field, but the functional consequence of this
visual processing has remained unclear for T5, let alone neurons
further downstream (Fisher et al., 2015a; Serbe et al., 2016). In
light of the spatiotemporal organization of the T5 STRF, the vi-
sual processing of T5 inputs gains new significance as a mecha-
nistic cornerstone of direction selectivity. An input with a
temporally biphasic receptive field will contribute to each of the
oppositely signed subfields of the T5 STRF, albeit at different
latencies. Similarly, an input with a center-surround spatial re-
ceptive field will contribute to each of the oppositely signed sub-
fields of the T5 STRF, albeit at different spatial locations. While
oppositely signed subfields can thus be inherited directly from
single T5 inputs, the oblique orientations of the subfields and the
spatiotemporal offset between them result from spatial offsets
between multiple inputs with distinct kinetics. The resulting
tilted geometry of the T5 STRF yields direction selectivity. Each
individual subfield will enhance the T5 response to motion along
its corresponding spacetime tilt, defining the PD. The spatiotem-
poral offset between the two oppositely signed subfields will re-
sult in suppression of the T5 response to motion along the axis of
the offset, defining the ND.

It is tempting to compare the receptive fields of T4 and T5 to
receptive fields of direction-selective simple cells in vertebrate
primary visual cortex, a model system in which spatiotemporal
tilt is widely accepted as the mechanistic basis for direction selec-
tivity (DeAngelis et al., 1993; Carandini et al., 2005). However,
whereas the simple cell generates direction selectivity using a fun-
damentally linear mechanism (Jagadeesh et al., 1993) and subse-
quently enhances direction selectivity via a nonlinearity, we have
not provided direct evidence for such a linear mechanism under-
lying T5 responses. While the T5 STRF clarifies the hybrid algo-
rithm underlying direction selectivity in T5, and the LN model of
T5 clarifies its sensitivity to higher order correlations, we consider
these models to be purely algorithmic descriptions of the trans-
formation of spatiotemporal visual input into direction-selective
T5 output. We do not consider these models to correspond di-
rectly to underlying mechanisms for the generation of T5 re-
sponses, although any future mechanistic model of the fly EMD
must be consistent with the algorithm we describe.

From the algorithmic perspective, T4, T5, and the simple cell
all combine PD enhancement and ND suppression at the level of
their net computation to become direction selective. Indepen-
dent of the potentially different internal workings of T4, T5, and
the simple cell, what common fundamental mechanisms under-
lie this hybrid algorithmic approach to direction selectivity? De-
spite all that is known about the functional circuit architecture
underlying direction selectivity in V1, certain mechanistic details
remain elusive. In particular, the sources of differentially delayed
input to direction-selective V1 simple cells have been challenging
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Figure 9. T5 uses both second- and third-order correlations to respond direction-selectively
to moving dark edges. A, XT representation of an idealized version of the linear spacetime filter
(left, light ellipses) that combines stimulus contrast at four spacetime points (dark circles).
These points are arranged across three points in time (t�, t0, t�) and three points in space
(x�, x0, x�). The output of this linear filter is passed through an idealized positive cubic
nonlinearity resembling that we observe in T5 (right). The response of the idealized model can
be factored into three classes of correlators: first-order (B), second-order (C), and third-order
(D). The first-order term linearly combines contrasts at the four spacetime points. The second-
order terms combine contrasts at two spacetime points. Two of these combinations correspond
to PD enhancement, two correspond to ND suppression, and two are not direction-selective. The
third-order terms combine contrasts at three spacetime points and can be arranged into four
types: divergent and convergent temporal gliders, and divergent and convergent spatial glid-
ers. Each second- and third-order correlator computes the signed product of contrasts at the
associated spacetime points where the sign is positive if the number of OFF points is even, and
negative if the number of OFF points is odd.
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to identify (De Valois and Cottaris, 1998; De Valois et al., 2000;
Livingstone and Conway, 2007; Priebe et al., 2010), and, as a
consequence, the relative spatial configuration of these inputs
remains unknown. We believe the stereotyped and well-
described input architecture to T4 and T5, combined with our
measurements and modeling of their STRFs, will pave the way for
new mechanistic models to reveal the specific contributions of
individual cell types to the generation of the highly structured,
spatiotemporally tilted T4 and T5 STRFs.
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