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Maximizing the speed and precision of communication while minimizing power dissipation is a
fundamental engineering design goal. Also, biological systems achieve remarkable speed, precision
and power efficiency using poorly understood physical design principles. Powerful theories like
information theory and thermodynamics do not provide general limits on power, precision and
speed. Here we go beyond these classical theories to prove that the product of precision and speed is
universally bounded by power dissipation in any physical communication channel whose dynamics
is faster than that of the signal. Moreover, our derivation involves a novel connection between
friction and information geometry. These results may yield insight into both the engineering design
of communication devices and the structure and function of biological signaling systems.

Evolution has discovered remarkably rapid, precise,
and energy efficient mechanisms for biological compu-
tation. For example the human brain performs myriad
computations, including complex object recognition in
150 ms [1] while consuming less than 20 watts [2]. In
contrast supercomputers operate in the megawatt range,
and cannot yet rival general human performance. To
both understand the design principles governing biolog-
ical computation, and to exploit such principles in engi-
neered systems, it is essential to develop a general theo-
retical understanding of the relationship between power,
precision and speed in computation. For example, what
are the fundamental limits and design tradeoffs involved
in simultaneously optimizing these three quantities?

Existing general theories, while powerful, often eluci-
date fundamental limits on at most two of these quan-
tities. For example, information theory [3, 4] provides
limits on the accuracy of communication under power
constraints. But achieving such limits may require cod-
ing messages in asymptotically large blocks, thus pro-
viding no theoretical guarantees on speed (though see
recent work [5, 6] on finite block length coding). Ther-
modynamics, through the second law, places fundamen-
tal limits on the work required to implement a phys-
ical process. But achieving such limits on thermody-
namic efficiency requires quasistatic processes that un-
fold infinitely slowly. More recent work has elucidated
the minimal energy required to perform a physical pro-
cess in finite time [7, 8]), but does not address accuracy
in any computation. Landauer [9–11] revealed that the
erasure of information sets a lower bound on the energy
consumed in computation. This observation inspired re-
versible computing [12], which can achieve accurate com-
putation at asymptotically zero energy expenditure, but
at the expense of requiring asymptotically infinite time
in the presence of noise.

In the absence of general theories governing perfor-
mance limits of computation at finite power, precision
and speed, many works in systems biology have focused
on tradeoffs between subsets of these quantities in very
specific chemical kinetic schemes for specific computa-

tions. Fundamental work on kinetic proofreading studied
two way trade-offs between energy and accuracy [13–21]
or speed and accuracy [22] in the communication of ge-
netic information. Also, many works have studied spe-
cific tradeoffs between energy and precision in cellular
chemosensation [23–29]. Notably, [30] studied simulta-
neous tradeoffs between power, speed and accuracy, but
again in a very specific scheme for sensory adaptation.

Here we derive a very general three-way performance
limit on power, precision and speed in physical commu-
nication. We focus on the problem of communication as
it is a fundamental prerequisite for more complex com-
putations. Indeed, in modern parallel computing, com-
munication between processors, not computation within
processors, presents an essential bottleneck for energy ef-
ficiency [31]. Our derived performance limit applies to
any Markovian communication channel whose internal
dynamics is faster than dynamics of the external signal to
be communicated. In such a scenario, the external signal
drives the communication channel into a non-equilibrium
regime, in which the power dissipated can be described
through a thermodynamic friction tensor on a manifold
of channel state distributions [32–36]. We derive a lower
bound on this friction tensor in terms of Fisher informa-
tion, a fundamental quantity in the geometry of infor-
mation [37]. By developing a novel inequality relating
friction, which governs energy dissipation, to informa-
tion geometry, which governs accuracy in statistical es-
timation, we derive our general relation between power,
precision and speed. In essence, we find that the product
of precision and speed is bounded by power.

Physical channels coupled to external signals. We
model the communication channel as a physical system
in contact with a thermal bath at inverse temperature
β = 1/kBT . The channel is coupled to an n dimensional
signal λ, specified by components λµ, µ = 1 . . . n, so that
the energy of the channel in microstate i is Ei(λ). When
the external signal is held at a fixed λ, we assume the
channel relaxes to an equilibrium Boltzmann distribution

πi(λ) = e−β[Ei(λ)−F(λ)], (1)
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where F is the free energy. We describe the non-
equilibrium dynamics of the channel by a continuous-
time Markov process, where the transition rate from state
i to state j is Kij and Kii = −

∑
j 6=iKij . We assume the

dynamics satisfies detailed balance:

πi(λ)Kij(λ) = πj(λ)Kji(λ). (2)

Thus the external signal modifies the channel dynamics
by directly modulating the transition rates (Fig. 1A).

Under the dynamics in (2), for fixed external signal λ,
the channel state distribution relaxes to (1), yielding a
manifold of equilibrium channel state distributions pa-
rameterized by λ. However, signals varying in time at a
finite speed will drive the channel state distribution off
the equilibrium manifold into a non-equilibrium distri-
bution p(t). This distribution will be distinct from the
equilibrium distribution π(λ(t)) associated with the in-
stantaneous value of the external signal (Fig. 1B). By
driving the channel at finite speed, temporally varying
signals perform physical work on the channel. Some of
this work contributes to a change in free energy of the
channel, while the rest is irreversibly dissipated as heat
into the thermal bath. Thus temporally varying signals
yield a dissipation of excess power. The non-equilibrium
distribution p(t) also contains information about the his-
tory of the signal λ(t). Thus a downstream observer that
can measure the channel microstate could use this infor-
mation to estimate the signal with some level of preci-
sion. Below we discuss in further detail the nature of
signal speed, channel power dissipation, channel infor-
mation geometry, and estimation precision, and we de-
rive general relations between these quantities. More-
over, in [38, §5] we discuss an extension of our results to
situations where the channel dynamics breaks detailed
balance, and the manifold of equilibrium distributions
((1) and Fig. 1B) is replaced with a manifold of non-
equilibrium steady states.

Power dissipation and the friction tensor. In gen-
eral, because the non-equilibrium distribution p(t) de-
pends on the entire history of the past temporal signal
λ(t′) for t′ < t, the power dissipation due to a chang-
ing signal can also depend on this entire history. How-
ever, if the temporal signal λ(t) varies more slowly than
the channel dynamics (see [38, §3] for a precise descrip-
tion of this slow signal regime), then the non-equilibrium
channel distribution p(t) remains close to the equilibrium
manifold in Fig. 1B, and the excess power dissipation at
time t depends on the signal history only through its in-
stantaneous value λ(t) and time derivative λ̇(t) [32]:

Pex =
∑
µν

gµν(λ) λ̇µλ̇ν , (3)

A. B.

FIG. 1: Modeling physical channels coupled to external sig-
nals. A. An external signal λµ(t) modulates the transition
rates of an arbitrary continuous-time Markovian dynamical
system, modeling a physical channel in contact with a heat
bath. A downstream receiver can construct an estimate λ̂µ of
the instantaneous signal by observing the instantaneous mi-
crostate of the channel. B. A manifold of equilibrium channel
state distributions π(λ) with intrinsic coordinates given by
constant signal values λ. Temporally varying signals λ(t)
drive the channel microstates through a trajectory of non-
equilibrium distributions p(t), off the equilibrium manifold.

where gµν is a friction tensor on the signal manifold,

gµν(λ) = (kBT )

∫ ∞
0

dt′ 〈δφµ(0) δφν(t′)〉 ,

φiµ = −β ∂Ei
∂λµ

, δφiµ = φiµ − 〈φµ〉 .
(4)

Here expectations are computed with respect to the equi-
librium distribution π(λ), and derivatives are computed
at the point λ. φiµ is the conjugate force exerted by the
channel in response to changing a single signal compo-
nent λµ when the channel is in microstate i. Thus the
statistics of force fluctuations at equilibrium combined
with finite signal velocity determines excess power dissi-
pation out of equilibrium, in the slow signaling limit.
From friction to information geometry. We now
derive a lower bound on the friction tensor for the models
of physical channels described above (see [38, §2] for more
details). First, the force correlation in (4) can be written
as

〈δφµ(0)δφν(t′)〉 =
∑
ij

pij(0, t
′)δφiµδφ

j
ν , (5)

where pij(t, t
′) = πi [exp(K(λ) (t′ − t))]ij is the probabil-

ity of being in state i at time t and in state j at a later
time t′, under equilibrium dynamics at at a constant ex-
ternal signal λ. To simplify the matrix exponential, it
is useful to employ an eigendecomposition of the rate
matrix: K = −

∑
a qau

aηa. Here ua are column vec-
tors obeying Kua = −qaua, ηa are row vectors obeying
ηaK = −qaηa, and they further obey the normalization
condition ηaub = δab. With detailed balance, the eigen-
rates qa are real and positive, ordered in increasing order,
and the eigenvectors can be chosen to be real, satisfying
ηai = πiu

a
i . The slowest eigenmode is the a = 0 station-

ary mode, with q0 = 0, η0 = π and u0 = e, a column
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vector of ones. We assume that the Markov dynamics is
ergodic, so the 0th eigenvalue of K is non-degenerate.

Now inserting (5) into (4), transforming to the eigen-
basis of K, and integrating over time t′ yields

gµν = kBT
∑
a>0

τa
(
ηa · δφµ

)
(ηa · δφν)

≥ kBT τmin

∑
a>0

(
ηa · δφµ

)
(ηa · δφν)

= kBT τminFµν ,

(6)

where τa = 1/qa, τmin = mina>0 τa, and

Fµν =
∑
i

πi(λ)
[
∂λµ lnπi(λ)

]
[∂λν lnπi(λ)] (7)

is the Fisher information. The inequality (6) means that
gµν − kBT τminFµν is a positive semi-definite matrix.

This bound depends on the fastest channel timescale
τmin, and is only tight when the channel has a single
timescale. Systems with many degrees of freedom can
often have extremely fast timescales. However, in prac-
tice, signals do not couple to arbitrarily fast time-scales.
In this case, τmin should thought of as the fastest channel
time-scale τa that is appreciably driven by the signal (i.e.
ηa· δφµ is non-negligible). Indeed, we will see below two
examples where this timescale is much slower than the
channel’s fastest timescale.
A power–precision–speed inequality. The previous
section revealed a simple inequality relating friction to
information. Here we build on this inequality to derive
a general relation between power, precision and signal
speed. In particular, the Fisher information in (7) is
a Riemannianian metric on the manifold of equilibrium
channel state distributions, describing the information
geometry [37] of this manifold. This metric measures the
sensitivity of the channel distribution π(λ) to changes
in the signal λ. Intuitively, the higher this sensitivity,
the more precisely one can estimate the signal λ from an
observation of the stochastic microstate i of the channel.

This intuition is captured by the Cramer-Rao theo-
rem. For simplicity, we focus below on the case of a one
dimensional signal λ. We discuss analogous results for
multidimensional signals in [38, §4]. Consider a single
observation of the channel microstate i, drawn from the
equilibrium channel distribution π(λ). Further consider

an unbiased signal estimator λ̂(i), i.e. a function of the
stochastic channel microstate i whose mean over obser-
vations is equal to the true signal λ. The precision of this
estimator is defined as the reciprocal of the variance of
λ̂ over the channel stochasticity: Prec(λ̂) = 1

Var(λ̂)
. The

Cramer-Rao [39, 40] bound states that estimator preci-
sion is bounded by Fisher information,

Prec(λ̂) ≤ F, (8)

for any unbiased estimator λ̂ (here we have dropped the
indices in Fµν for the special case of scalar signals).

A potential complication in the application of the clas-
sical Cramer-Rao bound for static signals λ, to our case
of time varying signals λ(t) is that the channel microstate
i is drawn from a non-equilibrium distribution p(t), not
the equilibrium distribution π(λ(t)). However, in the
slow signal limit, which is related to an expansion in
the temporal derivatives of λ(t), we can show that the
discrepancy between these two distributions can be ne-
glected, as any such discrepancy only corrects higher or-
der terms in this expansion (see [38, §6, Eq. 17]). Thus to
the leading order in the slow signal expansion, in which
the relation (3) between the friction tensor and power
dissipation holds, we can also replace the Fisher infor-
mation of p(t) with that of π(λ(t)).

Now, with the careful analysis of the validity of the
slow signal limit in hand, by simply combining the re-
lation (3) between power, friction, and signal speed, the
inequality (6) relating friction to information, and the in-
equality (8), relating information to precision, we derive
our central result relating power, precision and speed:

Prec(λ̂)V ≤ Pex

kBT τmin
, (9)

where V = λ̇2 is the squared signal velocity. Thus the
product of two desirable quantities, the communication
precision and signal speed, is upper bounded by an un-
desirable quantity, the excess power dissipation. This
inequality uncovers the fundamental result that any at-
tempt to communicate faster signals at fixed precision, or
with higher precision at fixed signal speed, necessarily re-
quires greater power dissipation. Moreover, this relation
applies universally to arbitrary physical channels.

Saturating (9) requires finding a statistically efficient

unbiased estimator λ̂ that saturates the Cramér-Rao
bound (8). For the exponential family distributions that
occur in statistical mechanics, we show how to construct
such estimators for coordinates “dual” to λ (see [37] and
[38, §7, Eqs. 18&19]).

Example channels. We now illustrate the general re-
lations derived above in specific examples. Here we only
summarize the results. Further details can be found in
[38, §8], as well as more examples involving multidimen-
sional signals and channels violating detailed balance.

Heavily damped harmonic oscillator. Consider a heav-
ily damped particle in a viscous medium moving in a
quadratic potential, where the external signal λ(t) con-
trols the position of the potential’s minimum. The par-
ticle position x obeys a Langevin equation,

ζẋ = −κ(x− λ(t)) +
√

2ζkBTξ(t), (10)

where ζ is the drag coefficient, κ is the potential’s spring
constant and ξ(t) is zero mean Gaussian white noise with
〈ξ(t)ξ(t′)〉 = δ(t − t′), reflecting fluctuations due to a
thermal bath. The distribution of x(t) given any signal
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history λ(t) is Gaussian with moments

〈x(t)〉 =

∫ ∞
0

dt′

τ
e−t

′/τλ(t− t′) =

∞∑
n=0

[
−τ d

dt

]n
λ(t),

〈δx(t)δx(t′)〉 = σ2e−|t−t
′|/τ ,

(11)
where τ = ζ

κ is the channel’s relaxation timescale and

σ2 = kBT
κ is the variance of the channel’s equilibrium po-

sition fluctuations. In the slow signal limit, where λ(t)
varies over timescales larger than τ , the channel’s mean
position approximately tracks the signal: 〈x(t)〉 ≈ λ(t).
More precisely, (11) reveals that this slow signal limit is
equivalent to neglecting higher order terms in a temporal
derivative expansion. This truncation is a good approxi-
mation when the temporal signal has negligible power at
frequencies larger than 1

τ [38, §3]. In this limit, a good
estimator for the signal based on the channel state x is
simply λ̂ = x, and its precision is Prec(λ̂) = 1

σ2 . In the
same slow limit, we compute power dissipation [38, §8.1]:

Pex = κλ̇(t)

∫ ∞
0

dt′ e−t
′/τ λ̇(t− t′) ≈ ζλ̇(t)2. (12)

Intuitively, the drag force is given by −ζẋ, so the rate of
doing work against it is ζẋ2, and in the slow signal limit,
x(t) ≈ λ(t). Finally, using the Fokker-Planck description
of the channel [38, §8.1], we find the intrinsic channel
eigenmode timescales are τn = τ/n, for n = 1, 2, . . .∞.
However, λ only couples to the n = 1 mode, so τmin = τ .

Combining all these results yields,

Prec(λ̂)V

Pex
=

[σ−2][λ̇2]

[ζλ̇2]
=

1

kBT τmin
, (13)

revealing that the damped harmonic oscillator channel
saturates the general bound (9). Note that the precision,
and the Fisher information, are given by 1

σ2 = κ
kBT

. This
means that increasing the spring constant, κ, increases
precision, as it forces x to track λ more closely. However,
it also speeds up the system, i.e. it decreases τ = ζ

κ ,
and has no net effect on the power consumption, Pex =
ζλ̇2. In contrast, increasing the drag coefficient, ζ, will
increase power consumption and slow down the system,
as expected, but has no effect on precision. In practice, it
is not possible to make κ arbitrarily large, or ζ arbitrarily
small. This will limit how small one could make τ .
Ising ring: Consider a one dimensional Ising ring with
periodic boundary conditions, i.e. N spins, σn = ±1,
with σ0 = σN , all receiving a signal h, with Hamiltonian

H = −h
∑
n

σn − J
∑
n

σnσn+1. (14)

We perform all computations as the signal h passes
through h = 0 at finite velocity ḣ, and we assume
Glauber dynamics [41] (see [38, §8.2]) for the spins. This
channel can model cooperativity between cell surface

chemical receptors [42], with σn = ±1 representing the
active and inactive receptor states, the field h determined
by the ligand concentration, and J controlling receptor
cooperativity. Equivalently, this channel could model co-
operatively in the opening and closing of voltage gated
ion channels, with h reflecting time-varying voltage and
the spins reflecting channel configurations.

First, although the Ising ring Glauber dynamics has
a spectrum of eigenmode timescales, with the shortest
being 1

αN , where α is the overall rate of the dynamics,
the signal h couples only to a mode with a single timescale
(see [38, §8.2]), yielding

τmin =
e2βJ cosh 2βJ

α
. (15)

This quantity increases with J , due to critical slow-
ing down [43]. The slow signal limit is valid when the
timescale τh over which h varies is much larger than τmin.
For a fixed τh, this limit yields an upper limit on values of
J that we can analyze, which is roughly J � kBT lnα τh.

The Fisher information is given by

F = Nβ2e2βJ , (16)

which also increases with J . In essence, increasing J
has two opposing effects on how well the spin statistics
transmits the signal h. First the gain of the mean spin
response to h (i.e. magnetic susceptibility) increases, im-
proving coding. Second, the variance of spin response
also increases with J , impairing coding. The former effect
dominates over the latter, leading to increased informa-
tion with cooperativity. Moreover, in [38, §8.2] we show
how to construct an efficient unbiased estimator for the
dual coordinate to the signal h (see [38, §7, Eqs. 18&19]).

The power dissipated when h is varied is given by

Pex =
Nβ e4βJ cosh 2βJ

α
ḣ2. (17)

This also increases with J , partly due to increased re-
sponse gain to h, and partly due to critical slowing down.
Now, combining (15), (16), and (17), we find

F V

Pex
=

1

(kBT ) τmin
, (18)

where V = ḣ2 is the squared signal velocity. This implies
the general bound (9) would be saturated for the Ising
ring if the Cramer-Rao bound (8) could be saturated.

We note that while increasing J increases Fisher infor-
mation, the dissipated power increases even faster, yield-
ing diminishing returns in terms of Fisher information
per watt. This is analogous to the diminishing returns
exemplified by the concavity of the capacity-cost curve
in information theory [4]. Also, in [42], the same system
was analyzed in a different setting. There the signal was
static while the channel was observed for an extended pe-
riod, whereas here the signal is changing and the channel
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is observed instantaneously. There, increasing receptor
cooperativity J reduced performance, since critical slow-
ing yields fewer independent signal observations. Simi-
larly, here we see that cooperativity unhelpfully tightens
the tradeoff between power, precision and speed, as it
slows down the system, decreasing the right-hand-side of
(9), as verified in [38, §8.2].
Discussion. In summary, by deriving general relations
between friction and information, we have shown that
the product of signal speed and channel precision can-
not exceed power dissipation for an extremely general
class of physical communication channels. Intuitively,
this three-way tradeoff arises because any increase in
speed at fixed precision requires the channel state dis-
tribution to change more rapidly, leading to increased
power dissipation. Similarly any increase in precision at
fixed speed requires high signal sensitivity, or a larger
signal dependent change in the channel equilibrium state
distribution as measured by the Fisher information met-
ric, which again leads to greater power dissipation.

Our newly discovered three-way tradeoff motivates
new experiments to assess exactly how close biological
systems come to simultaneously optimizing power, pre-
cision and speed. Indeed any experiment that measures
only two of these three quantities fundamentally cannot
assess how close evolution pushes biology to the limits set
by physics in general information processing tasks. More-
over, our work opens the door to intriguing theoretical
extensions. Here, we focused on tradeoffs in estimating
the current value of a slowly changing signal from an in-
stantaneous observation of a physical channel. Alterna-
tively, we could consider estimating either the temporal
history of a signal from the instantaneous channel state
[44, 45], or estimating a static signal given an extended
time series of channel states. The former would involve
Fisher information metrics of channel states over signal
trajectories, while the later would involve the Fisher in-
formation of probability distributions over channel state
trajectories. It would be interesting to explore universal
three-way tradeoffs between power, precision and speed
in these more general dynamical scenarios. We hope that
the essential ideas underlying our mathematical deriva-
tion of universal tradeoffs between power precision and
speed will be of benefit in understanding even more gen-
eral scenarios of communication and computation across
both biology and engineering.
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