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A vast majority of computation in the brain is performed by spiking neu-
ral networks. Despite the ubiquity of such spiking, we currently lack an
understanding of how biological spiking neural circuits learn and com-
pute in vivo, as well as how we can instantiate such capabilities in artifi-
cial spiking circuits in silico. Here we revisit the problem of supervised
learning in temporally coding multilayer spiking neural networks. First,
by using a surrogate gradient approach, we derive SuperSpike, a non-
linear voltage-based three-factor learning rule capable of training mul-
tilayer networks of deterministic integrate-and-fire neurons to perform
nonlinear computations on spatiotemporal spike patterns. Second, in-
spired by recent results on feedback alignment, we compare the perfor-
mance of our learning rule under different credit assignment strategies
for propagating output errors to hidden units. Specifically, we test uni-
form, symmetric, and random feedback, finding that simpler tasks can
be solved with any type of feedback, while more complex tasks require
symmetric feedback. In summary, our results open the door to obtaining
a better scientific understanding of learning and computation in spiking
neural networks by advancing our ability to train them to solve nonlin-
ear problems involving transformations between different spatiotempo-
ral spike time patterns.

1 Introduction

Neurons in biological circuits form intricate networks in which the primary
mode of communication occurs through spikes. The theoretical basis for
how such networks are sculpted by experience to give rise to emergent
computations remains poorly understood. Consequently, building mean-
ingful spiking models of brain-like neural networks in silico is a largely
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unsolved problem. In contrast, the field of deep learning has made remark-
able progress in building nonspiking convolutional networks that often
achieve human-level performance at solving difficult tasks (Schmidhuber,
2015; LeCun, Bengio, & Hinton, 2015). Although the details of how these
artificial rate–based networks are trained may arguably be different from
how the brain learns, several studies have begun to draw interesting paral-
lels between the internal representations formed by deep neural networks
and the recorded activity from different brain regions (Yamins et al., 2014;
McClure & Kriegeskorte, 2016; McIntosh, Maheswaranathan, Nayebi, Gan-
guli, & Baccus, 2016; Marblestone, Wayne, & Kording, 2016). A major im-
pediment to deriving a similar comparison at the spiking level is that we
currently lack efficient ways of training spiking neural network (SNNs),
thereby limiting their applications to mostly small toy problems that do
not fundamentally involve spatiotemporal spike time computations. For in-
stance, only recently have some groups begun to train SNNs on data sets
such as MNIST (Diehl & Cook, 2015; Guerguiev, Lillicrap, & Richards, 2017;
Neftci, Augustine, Paul, & Detorakis, 2016; Petrovici et al., 2017), whereas
most previous studies have used smaller artificial data sets.

The difficulty in simulating and training SNNs originates from multiple
factors. First, time is an indispensable component of the functional form
of a SNN, as even individual stimuli and their associated outputs are spa-
tiotemporal spike patterns rather than simple spatial activation vectors.
This fundamental difference necessitates the use of different cost functions
from the ones commonly encountered in deep learning. Second, most spik-
ing neuron models are inherently nondifferentiable at spike time, and the
derivative of their output with respect to synaptic weights is zero at all
other times. Third, the intrinsic self-memory of most spiking neurons in-
troduced by the spike reset is difficult to treat analytically. Finally, credit as-
signment in hidden layers is problematic for two reasons: (1) it is technically
challenging because efficient autodifferentiation tools are not available for
most event-based spiking neural network frameworks, and (2) the method
of weight updates implemented by the standard backpropagation of error
algorithm (Backprop) is thought to be biologically implausible (Grossberg,
1987; Crick, 1989).

Several studies of multilayer networks that build on the notion of feed-
back alignment (Lillicrap, Cownden, Tweed, & Akerman, 2016) have re-
cently illustrated that the strict requirements imposed on the feedback by
backpropagation of error signals can be loosened substantially without a
large loss of performance on standard benchmarks like MNIST (Lillicrap
et al., 2016; Guergiuev, Lillicrap, & Richards, 2016; Neftci et al., 2016; Baldi,
Sadowski, & Lu, 2016; Liao & Carneiro, 2015). While some of these stud-
ies have been performed using spiking networks, they still use effectively
a rate-based approach in which a given input activity vector is interpreted
as the firing rate of a set of input neurons (Eliasmith et al., 2012; Diehl &
Cook, 2015; Guergiuev et al., 2016; Neftci et al., 2016; Mesnard, Gerstner,



1516 F. Zenke and S. Ganguli

& Brea, 2016). While this approach is appealing because it can often be
related directly to equivalent rate-based models with stationary neuronal
transfer functions, it also largely ignores the idea that individual spike tim-
ing may carry additional information that could be crucial for efficient
coding (Thalmeier, Uhlmann, Kappen, & Memmesheimer, 2016; Denève
& Machens, 2016; Abbott, DePasquale, & Memmesheimer, 2016; Brendel,
Bourdoukan, Vertechi, Machens, & Denéve, 2017) and fast computation
(Thorpe, Fize, & Marlot, 1996; Gollisch & Meister, 2008).

In this article, we develop a novel learning rule to train multilayer SNNs
of deterministic leaky integrate-and-fire (LIF) neurons on tasks that funda-
mentally involve spatiotemporal spike pattern transformations. In doing
so, we go beyond the purely spatial rate-based activation vectors preva-
lent in deep learning. We further study how biologically more plausible
strategies for deep credit assignment across multiple layers generalize to
the enhanced context of more complex spatiotemporal spike pattern trans-
formations.

1.1 Prior Work. Supervised learning of precisely timed spikes in single
neurons and networks without hidden units has been studied extensively.
Pfister, Toyoizumi, Barber, and Gerstner (2006) have used a probabilistic
escape rate model to deal with the hard nonlinearity of the spike. Similar
probabilistic approaches have also been used to derive spike timing depen-
dent plasticity (STDP) from information-maximizing principles (Bohte &
Mozer, 2007; Toyoizumi, Pfister, Aihara, & Gerstner, 2005). In contrast to
that, ReSuMe (Ponulak & Kasiński, 2009) and SPAN (Mohemmed, Schliebs,
Matsuda, & Kasabov, 2012) are deterministic approaches that can be seen
as generalizations of the Widrow-Hoff rule to spiking neurons. In a similar
vein, the Chronotron (Florian, 2012) learns precisely timed output spikes
by minimizing the Victor-Pupura distance (Victor & Purpura, 1997) to a
given target output spike train. Similarly, Gardner and Grüning (2016) and
Albers, Westkott, and Pawelzik (2016) have studied the convergence prop-
erties of rules that reduce the van Rossum distance by gradient descent.
Moreover, Memmesheimer, Rubin, Ölveczky, & Sompolinsky (2014) pro-
posed a learning algorithm that achieves high capacity in learning long,
precisely timed spike trains in single units and recurrent networks. The
problem of sequence learning in recurrent neural networks has also been
studied as a variational learning problem (Brea, Senn, & Pfister, 2013;
Jimenez Rezende & Gerstner, 2014) and by combining adaptive control the-
ory with heterogeneous neurons (Gilra & Gerstner, 2017).

Supervised learning in SNNs without hidden units has also been studied
for classification problems. For instance, Maass, Natschläger, and Markram
(2002) have used the p-delta rule (Auer, Burgsteiner, & Maass, 2008) to train
the readout layer of a liquid state machine. Moreover, the tempotron (Gütig
& Sompolinsky, 2006; Gütig, 2016), which can be derived as a gradient-
based approach (Urbanczik & Senn, 2009), classifies large numbers of
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temporally coded spike patterns without explicitly specifying a target firing
time.

Only a few works have embarked on the problem of training SNNs
with hidden units to process precisely timed input and output spike trains
by porting backprop to the spiking domain. The main analytical difficulty
in these approaches arises from partial derivatives of the form ∂Si(t)/∂wi j
where Si(t) = ∑

k δ(t − tk
i ) is the spike train of the hidden neuron i and wi j is

a hidden weight. SpikeProp (Bohte, Kok, & La Poutre, 2002) sidesteps this
problem by defining a differentiable expression on the firing times instead,
on which standard gradient descent can be performed. While the original
approach was limited to a single spike per neuron, multiple extensions of
the algorithm exist, some of which also improve its convergence properties
(McKennoch, Liu, & Bushnell, 2006; Booij & tat Nguyen, 2005; Shrestha &
Song, 2015, 2017; de Montigny & Mêsse, 2016; Banerjee, 2016). However,
one caveat of such spike timing–based methods is that they cannot learn
starting from a quiescent state of no spiking, as the spike time is then ill de-
fined. Some algorithms, however, do not suffer from this limitation. For in-
stance, an extension of ReSuMe to multiple layers was proposed (Sporea &
Grüning, 2013) in which error signals were backpropagated linearly. More
recently, the same group proposed a more principled generalization of
Backprop to SNNs in Gardner, Sporea, and Grüning (2015) using a stochas-
tic approach, which can be seen as an extension of Pfister et al. (2006) to
multiple layers. In a similar flavor as Fremaux, Sprekeler, and Gerstner
(2010), Gardner et al. (2015) substitute the partial derivative of hidden spike
trains by a point estimate of their expectation value. Although, theoretically,
stochastic approaches avoid problems arising from quiescent neurons, con-
vergence can be slow, and the injected noise may become a major imped-
iment to learning in practice. Instead of approximating partial derivatives
of spike trains by their expectation value, in Bohte (2011), the correspond-
ing partial derivative is approximated as a scaled Heaviside function of the
membrane voltage. However, due to the use of the Heaviside function, this
approach has a vanishing surrogate gradient for subthreshold activations,
which limits the algorithm’s applicability to cases in which hidden units are
not quiescent. Finally, Huh and Sejnowski (2017) proposed another inter-
esting approach in which instead of approximating partial derivatives for
a hard spiking nonlinearity, instead a “soft” spiking threshold is used, for
which by design, standard techniques of gradient descent are applicable.

In contrast to this previous work, our method permits training multi-
layer networks of deterministic LIF neurons to solve tasks involving spa-
tiotemporal spike pattern transformations without the need for injecting
noise even when hidden units are initially completely silent. To achieve
this, we approximate the partial derivative of the hidden unit outputs as
the product of the filtered presynaptic spike train and a nonlinear function
of the postsynaptic voltage instead of the postsynaptic spike train. In the
following section, we explain the details of our approach.
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2 Derivation of the SuperSpike Learning Rule

To begin, we consider a single LIF neuron that we would like to emit a given
target spike train Ŝi for a given stimulus. Formally, we can frame this prob-
lem as an optimization problem in which we want to minimize the van
Rossum distance (van Rossum, 2001; Gardner & Grüning, 2016) between
Ŝi and the actual output spike train Si,

L = 1
2

∫ t

−∞
ds

[(
α ∗ Ŝi − α ∗ Si

)
(s)

]2
, (2.1)

where α is a normalized smooth temporal convolution kernel. We use dou-
ble exponential causal kernels throughout because they can be easily com-
puted online and could be implemented as electrical or chemical traces in
neurobiology. When computing the gradient of equation 2.1 with respect to
the synaptic weights wi j, we get

∂L
∂wi j

= −
∫ t

−∞
ds

[(
α ∗ Ŝi − α ∗ Si

)
(s)

] (

α ∗ ∂Si

∂wi j

)

(s), (2.2)

in which the derivative of a spike train ∂Si/∂wi j appears. This derivative is
problematic because for most neuron models, it is zero except at spike times
at which it is not defined. Most existing training algorithms circumvent this
problem by performing optimization directly on the membrane potential
Ui or introducing noise that renders the likelihood of the spike train

〈
Si(t)

〉
a

smooth function of the membrane potential. Here we combine the merits of
both approaches by replacing the spike train Si(t) with a continuous auxil-
iary function σ (Ui(t)) of the membrane potential. For performance reasons,
we choose σ (U ) to be the negative side of a fast sigmoid (see section 3),
but other monotonic functions that increase steeply and peak at the spiking
threshold (e.g., exponential) should work as well. Our auxiliary function
yields the replacement

∂Si

∂wi j
→ σ ′(Ui)

∂Ui

∂wi j
. (2.3)

To further compute the derivative ∂Ui/∂wi j in the expression above, we ex-
ploit the fact that for current-based LIF models, the membrane potential
Ui(t) can be written in integral form as a spike response model (SRM0 (Ger-
stner, Kistler, Naud, & Paninski, 2014)),

Ui(t) =
∑

j

wi j
(
ε ∗ Sj(t)

) + (η ∗ Si(t)) , (2.4)
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where we have introduced the causal membrane kernel ε, which corre-
sponds to the postsynaptic potential (PSP) shape, and η, which captures
spike dynamics and reset. Due to the latter, Ui depends on its own past
through its output spike train Si. While this dependence does not allow us
to compute the derivative ∂Ui

∂wi j
directly, it constitutes only a small correc-

tion to Ui provided the firing rates are low. Such low firing rates not only
seem physiologically plausible, but also can be easily achieved in practice
by adding homeostatic mechanisms that regularize neuronal activity levels.
Neglecting the second term simply yields the filtered presynaptic activity
∂Ui
∂wi j

≈ (ε ∗ Sj(t)), which can be interpreted as the concentration of neuro-
transmitters at the synapse. When this approximation is substituted back
into equation 2.2, the gradient descent learning rule for a single neuron
takes the form

∂wi j

∂t
= r

∫ t

−∞
ds ei(s)

︸︷︷︸
Error signal

α ∗

⎛

⎜
⎝σ ′(Ui(s))

︸ ︷︷ ︸
Post

(
ε ∗ Sj

)
(s)

︸ ︷︷ ︸
Pre

⎞

⎟
⎠

︸ ︷︷ ︸
≡λi j (s)

, (2.5)

where we have introduced the learning rate r and short notation for the out-
put error signal ei(s) ≡ α ∗ (Ŝi − Si) and the eligibility trace λi j. In practice,
we evaluate the expression on minibatches, and we often use a per param-
eter learning rate ri j closely related to RMSprop (Hinton, 2012) to speed up
learning.

Equation 2.5 corresponds to the SuperSpike learning rule for output neu-
ron i. However, by redefining the error signal ei as a feedback signal, we will
use the same rule for hidden units as well. Before we move on to testing this
learning rule, we first state a few of its noteworthy properties: (1) it has a
Hebbian term that combines pre- and postsynaptic activity in a multiplica-
tive manner, (2) the learning rule is voltage based, (3) it is a nonlinear Heb-
bian rule due to the occurrence of σ ′(Ui), (4) the causal convolution with
α acts as an eligibility trace to solve the distal reward problem due to er-
ror signals arriving after an error was made (Izhikevich, 2007), and (5) it is
a three-factor rule in which the error signal plays the role of a third factor
(Frémaux & Gerstner, 2016; Kusmierz, Isomura, & Toyoizumi, 2017). Unlike
most existing three-factor rules, however, the error signal is specific to the
postsynaptic neuron, an important point that we will return to.

3 Methods

We trained networks of spiking LIF neurons using a supervised learning
approach that we call SuperSpike. This approach generalizes the back-
propagation of error algorithm (Schmidhuber, 2015) as known from the
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Table 1: Neuron Model Parameters.

Parameter Value

ϑ −50 mV
Urest −60 mV
τmem 10 ms
τ syn 5 ms
τ ref 5 ms

multilayer perceptron to deterministic spiking neurons. Because the partial
derivative, and thus the gradient of deterministic spiking neurons, is zero
almost everywhere, to make this optimization problem solvable, we intro-
duce a nonvanishing surrogate gradient (Hinton, 2012; Bengio, Léonard, &
Courville, 2013) (cf. equation 2.5). All simulations were run with a temporal
resolution of 0.1 ms using the Auryn simulation library, which is publicly
available (Zenke & Gerstner, 2014).

3.1 Neuron Model. We use LIF neurons with current-based synaptic
input because they can be alternatively formulated via their integral form
(cf. equation 2.4). However, to simulate the membrane dynamics, we com-
puted the voltage Ui of neuron i as described by the following differential
equation,

τmem dUi

dt
= (Urest − Ui) + Isyn

i (t), (3.1)

in which the synaptic input current Isyn
i (t) evolves according to

d
dt

Isyn
i (t) = − Isyn

i (t)
τ syn +

∑

j∈pre

wi jS j(t). (3.2)

The value of Isyn
i (t) jumps by an amount wi j at the moment of spike arrival

from presynaptic neurons Sj(t) = ∑
k δ(t − tk

j ), where δ denotes the Dirac δ-
function and tk

j (k = 1, 2, . . .) are firing times of neuron j. An action potential
is triggered when the membrane voltage of neuron i rises above the thresh-
old value ϑ (see Table 1 for parameters). Following a spike, the voltage Ui

remains clamped at Urest
i for τ ref = 5 ms to emulate a refractory period. Af-

ter generation, spikes are propagated to other neurons with an axonal delay
of 0.8 ms.

3.2 Stimulation Paradigms. Depending on the task at hand, we used
two types of stimuli. For simulation experiments in which the network had
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to learn exact output spike times, we used a set of frozen Poisson spike
trains as input. These stimuli consisted of a single draw of n, where n is the
number of input units, Poisson spike trains of a given duration. These spike
trains were then repeated in a loop and had to be associated with the tar-
get spike train, which was consistently aligned to the repeats of the frozen
Poisson inputs. For benchmarking and comparison reasons, the stimulus
and target spike trains shown in this article are publicly available as part of
the Supervised Spiking Benchmark Suite (version 71291ea; Zenke, 2017).

For classification experiments, we used sets of different stimuli. Individ-
ual stimuli were drawn as random neuronal firing time offsets from a com-
mon stimulus onset time. Stimulus order was chosen randomly and with
randomly varying inter-stimulusintervals.

3.3 Plasticity Model. The main ingredients for our supervised learning
rule for spiking neurons (SuperSpike) are summarized in equation 2.5 de-
scribing the synaptic weight changes. As also alluded to above, the learn-
ing rule can be interpreted as a nonlinear Hebbian three-factor rule. The
nonlinear Hebbian term detects coincidences between presynaptic activity
and postsynaptic depolarization. These spatiotemporal coincidences at the
single synapse wi j are then stored transiently by the temporal convolution
with the causal kernel α. This step can be interpreted as a synaptic eligi-
bility trace, which in neurobiology could, for instance be implemented as
a calcium transient or a related signaling cascade (cf. Figure 3b; Gütig &
Sompolinsky, 2006). Importantly, the algorithm is causal in the sense that
all necessary quantities are computed online without the need to propagate
error signals backward through time, which is similar to real-time recurrent
learning (RTRL) (Williams & Zipser, 1989). In the model, all the complexity
of neural feedback of learning is absorbed into the per neuron signal ei(t).
Because it is unclear if and how such error feedback is signaled to individ-
ual neurons in biology, we explored different strategies that we explain in
more detail below. For practical reasons, we integrate equation 2.5 over fi-
nite temporal intervals before updating the weights. The full learning rule
can be written as

�wk
i j = ri j

∫ tk+1

tk

ei(s)
︸︷︷︸

Error signal

α ∗

⎛

⎜
⎝σ ′(Ui(s))

︸ ︷︷ ︸
Post

(
ε ∗ Sj

)
(s)

︸ ︷︷ ︸
Pre

⎞

⎟
⎠ ds. (3.3)

In addition to the neuronal dynamics as described in the previous sec-
tion, the evaluation of equation 2.5 can thus coarsely be grouped as follows:
(1) evaluation of presynaptic traces, (2) evaluation of Hebbian coincidence
and computation of synaptic eligibility traces, (3) computation and propa-
gation of error signals, and (4) integration of equation 2.5 and weight up-
date. We next describe each part in more detail.
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3.3.1 Presynaptic Traces. Because ε is a double exponential filter, the tem-
poral convolution in the expression of the presynaptic traces, equation 3.3,
can be evaluated efficiently online by exponential filtering twice. Specifi-
cally, we explicitly integrate the single exponential trace,

dz j

dt
= − z j

τrise
+ Sj(t),

in every time step, which is then fed into a second exponential filter array,

τdecay
dz̃ j

dt
= −z̃ j + z j,

with z̃ j(t) ≡ (
ε ∗ Sj

)
(t) which now implements the effective shape of a PSP

in the model. In all cases, we chose the time constants τrise = 5 ms and
τdecay = 10 ms.

3.3.2 Hebbian Coincidence Detection and Synaptic Eligibility Traces. To eval-
uate the Hebbian term, we evaluate the surrogate partial derivative σ ′(Ui)
in every time step. For efficiency reasons, we use the partial derivative of
the negative half of a fast sigmoid f (x) = x

1+|x| , which does not require the
costly evaluation of exponential functions in every time step. Specifically,
we compute σ ′(Ui) = (1 + |hi|)−2 with hi ≡ β (Ui − ϑ ), where ϑ is the neu-
ronal firing threshold and β = (1 mV)−1 unless mentioned otherwise.

We compute the outer product between the delayed presynaptic traces
z̃ j(t − �) and the surrogate partial derivatives σ ′(Ui)(t − �) in every time
step. Here, the delay � is chosen such that it offsets the 0.8 ms axonal delay,
which spikes acquire during forward propagation. Because the presynap-
tic traces decay to zero quickly in the absence of spikes, we approximate
them to be exactly zero when their numerical value drops below machine
precision of 10−7. This allows us to speed up the computation of the outer
product by skipping these presynaptic indices in the computation.

To implement the synaptic eligibility trace as given by the temporal fil-
ter α, we filter the values of the Hebbian product term with two exponential
filters as in the case of the presynaptic traces z j. It is important to note, how-
ever, that these traces now need to be computed for each synapse wi j, which
makes the algorithm scale as O(n2) for n being the number of neurons.
This makes it the most obvious target for future optimizations of our al-
gorithm. Biologically, this complexity could be implemented naturally sim-
ply because synaptic spines are electrical and ionic compartments in which
a concentration transient of calcium or other messengers decays on short
timescales. For SuperSpike to function properly, it is important that these
transients are long enough to temporally overlap with any causally related
error signal ei(t). Formally, the duration of the transient in the model is given
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by the filter kernel shape used to compute the van Rossum distance. We
used a double-exponentially filtered kernel with the same shape as a PSP
in the model, but other kernels are possible.

3.3.3 Error Signals. We distinguish two types of error signals: output er-
ror signals and feedback signals. Output error signals are directly tied to
output units for which a certain target signal exists. Their details depend
on the underlying cost function we are trying to optimize. Feedback signals
are derived from output error signals by sending them back to the hidden
units. In this study, we used two slightly different classes of output error
signals and three different types of feedback.

At the level of output errors, we distinguish between the cases in which
our aim was to learn precisely timed output spikes. In these cases, the out-
put error signals were exactly given by ei = α ∗ (Ŝi − Si) for an output unit
i. Unless stated otherwise, we chose α ∝ ε but normalized to unity. As can
be seen from this expression, the error signal ei vanishes only if the target
and the output spike train exactly match with the temporal precision of our
simulation. All cost function values were computed online as the root mean
square from a moving average with 10 s time constant.

In simulations in which we wanted to classify input spike patterns rather
than generate precisely timed output patterns, we introduced some slack
into the computation of the error signal. For instance, as illustrated in Fig-
ure 5, we gave instantaneous negative error feedback as described by ei =
−α ∗ Serr

i for each erroneous additional spike Serr
i . However, since for this

task we did not want the network to learn precisely timed output spikes,
we gave a positive feedback signal ei = α ∗ Smiss

i only at the end of a miss
trial—that is, when a stimulus failed to evoke an output spike during the
window of opportunity when it should have (see section 3.2).

3.3.4 Feedback Signals. We investigated different credit assignment
strategies for hidden units. To that end, hidden-layer units received one
out of three types of feedback (cf. Figure 3b). We distinguish between sym-
metric, random, and uniform feedback. Symmetric feedback signals were
computed in analogy to backprop as the weighted sum ei = ∑

k wkiek of the
downstream error signals using the actual feedforward weights wik. Note
that in contrast to backprop, the nonlocal information of downstream acti-
vation functions does not appear in this expression, which is closely related
to the notion of straight-through estimators (Hinton, 2012; Bengio et al.,
2013; Baldi et al., 2016). Motivated by recent results on feedback alignment
(Lillicrap et al., 2016), random feedback signals were computed as the ran-
dom projection ei = ∑

k bkiek, with random coefficients bki drawn from a nor-
mal distribution with zero mean and unit variance. This configuration could
be implemented, for instance, by individual neurons sensing differential
neuromodulator release from a heterogeneous population of modulatory
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neurons. Finally, in the case of uniform feedback, all weighting coefficients
were simply set to one ei = ∑

k ek corresponding closest to a single global
third factor distributed to all neurons, akin to a diffuse neuromodulatory
signal.

3.3.5 Weight Updates. To update the weights, the time-continuous time
series corresponding to the product of error or feedback signal and the
synaptic eligibility traces λi j were not directly added to the synaptic
weights, but first integrated in a separate variable mi j in chunks of tb = 0.5 s.
Specifically, we computed mi j → mi j + gi j with gi j(t) = ei(t) λi j(t) at each
time step. For stimuli exceeding the duration tb, this can be seen as the con-
tinuous time analogue to minibatch optimization. We chose tb on the order
of half a second as a good compromise between computational cost and
performance for synaptic updates. At the end of each interval tb, all weights
were updated according to wi j → wi j + ri jmi j with the per parameter learn-
ing rate ri j. In addition, we enforced the constraint for individual weights
to remain in the interval −0.1 < wi j < 0.1. After updating the weights, the
variables mi j were reset to zero.

3.3.6 Per Parameter Learning Rates. To facilitate finding the right learn-
ing rate and the speed-up training times in our simulations, we imple-
ment a per parameter learning rate heuristic. To compute the per-parameter
learning rate, in addition to mi j we integrated another auxiliary quantity
vi j → max(γ vi j, g2

i j). Here γ = exp(−�/τrms) ensures a slow decay of vi j for
gi j = 0. Consequently, vi j represents an upper estimate of the noncentered
second moment of the surrogate gradient for each parameter on the charac-
teristic timescale τrms. With these definitions, the per parameter learning
rate was defined as ri j ≡ r0√

vi j
. This choice is motivated by the RMSprop

optimizer, which is commonly used in the field of deep learning (Hinton,
2012). However, RMSprop computes a moving exponential average over
the g2

i j. We found that introducing the max function resulted in a similar
cost after convergence compared to RMSprop, but rendered training less
sensitive to changes in the learning rate while simultaneously yielding ex-
cellent convergence times (see Figure 1). We call this slightly modified ver-
sion “RMaxProp” (compare also AdaMax; Kingma & Ba, 2014). Finally, the
parameter r0 was determined by grid search over the values (10, 5, 1, 0.5,

0.1) × 10−3.

3.3.7 Regularization Term. Where mentioned explicitly for experiments
with random feedback we added a heterosynaptic regularization term to
the learning rule of the hidden layer weights to avoid pathologically high
firing rates (Zenke, Agnes, & Gerstner, 2015). In these experiments, the full
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Figure 1: Comparison of different per parameter learning rate strategies. For
comparison, we trained a network with one output unit, four hidden units, and
symmetric feedback using different per parameter learning rate strategies. Us-
ing the same random initialization, we recorded learning curves for varying
values of r0. We find that while good learning performance can be achieved
with all strategies, a fixed learning rate leads to good results only within a nar-
row regime of r0 values (left), whereas both RMSprop (middle) and RMaxProp
(right) are less sensitive to the choice of r0.

learning rule was

∂whid
i j

∂t
= ri j

∫ tk+1

tk

ei(s)
︸︷︷︸

Error signal

α ∗

⎛

⎜
⎝σ ′(Ui(s))

︸ ︷︷ ︸
Post

(
ε ∗ Sj

)
(s)

︸ ︷︷ ︸
Pre

⎞

⎟
⎠ − ρ wi j ζ (s)

︸ ︷︷ ︸
Regularizer

ds,

(3.4)

where we introduced the activity-dependent regularization function ζ and
the strength parameter ρ. Specifically, we used

ζ (t) = za
i (t), (3.5)

with the exponential moving average of the instantaneous postsynaptic fir-
ing rate zi, which evolved according to the following differential equation:

dzi

dt
= − zi

τhet
+ Si(t).

We fixed ρ = 1 and a = 4 throughout, except in Figure 8, where these pa-
rameters were varied systematically.
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Figure 2: SuperSpike learns precisely timed output spikes for a single output
neuron. (a) Snapshot of initial network activity. Bottom: Spike raster of the input
activity. Middle: The membrane potential of the output neuron (solid black line)
and its firing threshold (dashed line). Target spikes are shown as black points.
Top: Error signal (gray solid line). Zero error is indicated for reference as the dot-
ted line. (b) Same as in panel a, but after 800 s of SuperSpike learning. (c) Spike
timing plot showing the temporal evolution of pertrial firing times (d) Learning
curves of 20 trials (gray) as well, as their mean (black line) during training.

4 Numerical Experiments

To test whether equation 2.5 could be used to train a single neuron to emit
a predefined target spike pattern, we simulated a single LIF neuron that
received a set of 100 spike trains as inputs. The target spike train was cho-
sen as five equidistant spikes over the interval of 500 ms. The inputs were
drawn as Poisson spike trains that repeated every 500 ms. We initialized
the weights in a regime where the output neuron only showed subthresh-
old dynamics but did not spike (see Figure 2a). Previous methods, starting
from this quiescent state, would require the introduction of noise to gen-
erate spiking, which would in turn retard the speed with which precise
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output spike times could be learned. Finally, weight updates were com-
puted by evaluating the integral in equation 2.5 over a fixed interval and
scaling the resulting value with the learning rate (see section 3). After 500
trials, corresponding to 250 s of simulated time, the output neuron had
learned to produce the desired output spike train (see Figure 2b). However,
fewer trials could generate good approximations to the target spike train
(see Figure 2c).

4.1 Learning in Multilayer Spiking Neural Networks. Having estab-
lished that our rule can efficiently transform complex spatiotemporal input
spike patterns to precisely timed output spike trains in a network without
hidden units, we next investigated how well the same rule would perform
in multilayer networks. The form of equation 2.5 suggests a straightforward
extension to hidden layers in analogy to backprop. Namely, we can use
the same learning rule; equation 2.5, for hidden units, with the modifica-
tion that ei(t) becomes a complicated function that depends on the weights
and future activity of all downstream neurons. However, this nonlocality in
space and time presents serious problems in terms of both biological plausi-
bility and technical feasibility. Technically, this computation requires either
backpropagation through time through the PSP kernel or the computation
of all relevant quantities online as, for instance, in the case of RTRL. Here,
we explore an approach akin to the latter since our specific choice of tempo-
ral kernels allows us to compute all relevant dynamic quantities and error
signals online (see Figure 3b). In our approach, error signals are distributed
directly through a feedback matrix to the hidden-layer units (see Figure 3a).
Specifically, this means that the output error signals are propagated neither
through the actual or the “soft” spiking nonlinearity. This idea is closely re-
lated to the notion of straight-through estimators in machine learning (Hin-
ton, 2012; Bengio et al., 2013; Baldi et al., 2016). We investigated different
configurations of the feedback matrix, which can be (1) symmetric (i.e., the
transpose of the feedforward weights), as in the case of backprop; (2) ran-
dom, as motivated by the recent results on feedback alignment (Lillicrap
et al., 2016); or (3) uniform, corresponding closest to a single global third
factor distributed to all neurons, akin to a diffuse neuromodulatory signal.

We first sought to replicate the task shown in Figure 2, but with the ad-
dition of a hidden layer composed of four LIF neurons. Initially, we tested
learning with random feedback. To that end, feedback weights were drawn
from a zero mean unit variance gaussian, and their value remained fixed
during the entire simulation. The synaptic feedforward weights were also
initialized randomly at a level at which neither the hidden units nor the
output unit fired a single spike in response to the same input spike trains
as used before (see Figure 4a). After training the network for 40 s, some of
the hidden units had started to fire spikes in response to the input. Simi-
larly, the output neuron had started to fire at intermittent intervals closely
resembling the target spike train (not shown). Continued training on the
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Figure 3: (a) Schematic illustration of SuperSpike learning in a network with a
hidden layer. Spikes generated by the lower input layer are propagated through
the hidden layer in the middle to the output layer at the top. (b) Temporal evolu-
tion of the dynamical quantities involved in updating a single synaptic weight
from an input to a hidden-layer unit. For brevity, we have suppressed the neu-
ron indices on all the variables. Input spikes (bottom panel) and their associated
postsynaptic potentials x sum to the membrane voltage in the hidden unit (pur-
ple). Farther downstream, the spikes generated in the hidden layer sum at the
output unit (Uout). Finally, the error signal e (green) is computed from the out-
put spike train. It modulates learning of the output weights and is propagated
back to the hidden-layer units through feedback weights. Note that the error
signal e is strictly causal. The product of presynaptic activity (x) with the non-
linear function σ ′(U ) is further filtered in time by α giving rise to the synaptic
eligibility trace λ. In a biological scenario λ could, for instance, be manifested as
a calcium transient at the synaptic spine. Finally, temporal coincidence between
λ and the error signal e determines the sign and magnitude of the plastic weight
changes dw.

same task for a total of 250 s led to a further refinement of the output spike
train and more differentiated firing patterns in a subset of the hidden units
(see Figure 4b).

Although we did not restrict synaptic connectivity to obey Dale’s prin-
ciple, in the example with random feedback, all hidden neurons with
positive feedback connections ended up being excitatory, whereas neu-
rons with negative feedback weights generally turned out to be inhibitory
at the end of training. These dynamics are a direct manifestation of the
feedback alignment aspect of random feedback learning (Lillicrap et al.,
2016). Because the example shown in Figure 4 does not strictly require
inhibitory neurons in the hidden layer, in many cases the neurons with
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Figure 4: SuperSpike learning with different types of feedback allows training
multilayer networks. (a) Network activity at the initial trial at reference time
t = 0 s. The bottom panel shows the input spike trains and membrane poten-
tial traces of the four hidden units. The membrane potential of the output unit is
shown in the middle. The dashed line is the output neuron firing threshold. The
points correspond to target firing times, and the top plot shows the error sig-
nal at the output layer. Hidden units receive the same input spikes as shown in
Figure 2a. (b) Same as panel a but after 250 s of training with random feedback.
The two hidden units that have started to respond to the repeating input spik-
ing pattern are the ones with positive feedback weights, whereas the two hidden
neurons that receive negative feedback connections from the output layer (mid-
dle traces) respond mostly at the offset of the repeating stimulus. (c) Learning
curves of networks trained with random feedback connections. Gray lines cor-
respond to single trials and the black line to the average. The dashed line is the
same average but for a network with eight hidden-layer units. (d) Same as panel
c but for a network with symmetric feedback connections. (e) Same as panels c
and d but for uniform “all one” feedback connections.
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negative feedback remained quiescent or at low activity levels at the end of
learning.

Learning was successful for different initial conditions, although the
time for convergence to zero cost varied (see Figure 4d). We did encounter
a few cases in which the network completely failed to solve the task. These
were the cases in which all feedback connections happened to be initialized
with a negative value (see Figure 4c). This eventuality could be made very
unlikely, however, by increasing in the number of hidden units (see Fig-
ure 4c). Other than that, we did not find any striking differences in perfor-
mance when we replaced the random feedback connections by symmetric
(see Figure 4d) or uniform “all one” feedback weights (see Figure 4e).

The previous task was simple enough such that solving it did not re-
quire a hidden layer. We therefore investigated whether SuperSpike could
also learn to solve tasks that cannot be solved by a network without hidden
units. To that end, we constructed a spiking exclusive-or task in which four
different spiking input patterns had to be separated into two classes. In this
example, we used 100 input units, although the effective dimension of the
problem was two by construction. Specifically, we picked three nonover-
lapping sets of input neurons with associated fixed random firing times in
a 10 ms window. One set was part of all patterns and served as a time ref-
erence. The other two sets were combined to yield the four input patterns
of the problem. Moreover, we added a second readout neuron each corre-
sponding to one of the respective target classes (see Figure 5a). The input
patterns were given in random order as short bouts of spiking activity at
random intertrial intervals during which input neurons were firing stochas-
tically at 4 Hz (see Figure 5b). Because of the added noise, we relaxed the
requirement for precise temporal spiking and instead required output neu-
rons to spike within a narrow window of opportunity, which was aligned
with and outlasted each stimulus by 15 ms. The output error signal was
zero unless the correct output neuron failed to fire within the window. In
this case, an error signal corresponding to the correct output was elicited
at the end of the window. At any time, an incorrect spike triggered imme-
diate negative feedback. We trained the network comparing different types
of feedback. A network with random feedback quickly learned to solve this
task with perfect accuracy (see Figures 5b and 5c), whereas a network with-
out hidden units was unable to solve the task (see Figure 5d). Perhaps not
surprising, networks with symmetric feedback connections also learned the
task quickly, and overall their learning curves were more stereotyped and
less noisy (see Figure 5e), whereas networks with uniform feedback per-
formed worse on average (see Figure 5f). Overall, these results illustrate
that temporally coding spiking multilayer networks can be trained to solve
tasks that cannot be solved by networks without hidden layers. Moreover,
these results show that random feedback is beneficial over uniform feed-
back in some cases.
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Figure 5: Network trained to solve a nonlinearly separable classification prob-
lem with noisy input neurons. (a) Sketch of network layout with two output
units and four hidden units. (b) Snapshot of network activity at the end of train-
ing with random feedback. Four input patterns from two nonlinearly separable
classes are presented in random order (shaded areas). In between stimulus peri-
ods, input neurons spike randomly with 4 Hz background firing rate. (c) Learn-
ing curves of 20 trials with different random initializations (gray) for a network
with random feedback connections that solves the task. The average of all trials
is given by the black line. The average of 20 simulation trials with an additional
regularization term (see section 3) is shown in green. (d) Same as panel c but for
a network without hidden units that cannot solve the task. (e) Same as panel
c but for symmetric feedback. (f) Same as panel c but for uniform (“all ones”)
feedback connections.

4.2 Limits of Learning with Random Feedback. All tasks considered
so far were simple enough that they could be solved by most three-layer
networks with zero error for all types of feedback signals. We hypothesized
that the observed indifference to the type of feedback could be due to the
task being too simple. To test whether this picture would change for a more
challenging task, we studied a network with 100 output neurons that had to
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learn a 3.5 second-long complex spatiotemporal output pattern from cycli-
cally repeating frozen Poisson noise (see section 3). Specifically, we trained
a three-layer SNN with 100 input, 100 output, and different numbers of hid-
den neurons (see Figure 6a). Within 1000 s of training with symmetric feed-
back connections, a network with 32 or more hidden units could learn to
emit an output spike pattern that visually matched the target firing pattern
(see Figures 6b and 6c). After successful learning, hidden unit activity was
irregular and at intermediate firing rates of 10 to 20 Hz with a close to expo-
nential interspike interval distribution (see Figure 6d). However, the target
pattern was not learned perfectly, as evidenced by a number of spurious
spikes (see Figure 6c) and a nonvanishing van Rossum cost (see Figure 7a).

On the same task, a simulation with random feedback yielded substan-
tially worse performance (see Figures 7a to 7e), and the output pattern be-
came close to impossible to recognize visually (see Figure 7e). As expected,
results from uniform feedback were worst (not shown); hence, we do not
consider this option in the following. Notably, the random feedback case
performs worse than a network that was trained without a hidden layer.
Since we observed abnormally high firing rates in hidden-layer neurons
in networks trained with random feedback (see Figure 7e), we wondered
whether performance could be improved through the addition of a het-
erosynaptic weight decay which acts as an activity regularizer (see section 3
and appendix A; Zenke et al., 2015). The addition of an activity-dependent
heterosynaptic weight decay term to the hidden-layer learning rule notably
decreased hidden-layer activity (see Figures 7f and 8), improved learning
performance (see Figures 7a and 7c), and increased the visual similarity of
the output patterns (see Figure 7f).

However, even this modified learning rule did not achieve compara-
ble performance levels to a symmetric-feedback network. Importantly, for
the hidden-layer sizes we tested, random feedback networks did not even
achieve the same performance levels as networks without a hidden layer,
whereas symmetric feedback networks did (see Figures 7b and 7c). Not
surprisingly, networks with wider hidden layers performed superior to
networks with fewer hidden units, but networks with random feedback
performed consistently worse than their counterparts trained with sym-
metric feedback (see Figure 7b). Finally, when we trained the network using
symmetric feedback with a learning rule in which we disabled the nonlinear
voltage dependence by setting the corresponding term to one, the output
pattern was degraded (“Symm. linear” in Figure 7g; cf. equation 2.5), but
unlike in the random feedback case, most hidden unit firing rates remained
low.

These results seem to confirm our intuition that for more challenging
tasks, the nonlinearity of the learning rule, firing rate regularization, and
nonrandom feedback seem to become more important to achieving good
performance on the type of spatiotemporal spike pattern transformation
tasks we considered here.
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Figure 6: Learning of complex spatiotemporal spike pattern transformations.
(a) Schematic illustration of the network architecture. (b) Spike raster of tar-
get firing pattern of 100 output neurons. The whole firing pattern has a
duration of 3.5 s. (c) Snapshot of network activity of a network with nh = 32
hidden units and symmetric feedback after 1000 s of SuperSpike learning.
Bottom panel: Spike raster of repeating frozen Poisson input spikes. Middle
panel: Spike raster of hidden unit spiking activity. Top panel: Spike raster of
output spiking activity. The black arrow denotes the point in time at which
SuperSpike learning is switched off, which freezes the spiking activity of the
fully deterministic network. (d) Histograms of different firing statistics of
hidden-layer activity at the end of learning. Top: Distribution of firing rates.
Middle: Interspike interval (ISI) distribution on semi-log axes. Bottom: Distri-
bution of coefficient of variation (CV) of the ISI distribution.
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Figure 7: Learning of spatiotemporal spike patterns. (a) Learning curves for
networks trained with different types of feedback or fixed hidden-layer weights,
respectively. Learning was activated at the dashed vertical line, and the learn-
ing rate was reduced by a factor of 10 at each dotted vertical line. (b) Cost
after convergence for different feedback strategies and varying numbers of hid-
den units. Dashed horizontal line: Performance of a network without hidden
units. (c) Cost after convergence for symmetric feedback with a fixed number of
hidden units nh = 256. Dashed line: Performance of a network without hidden
units. Symm. linear: Learning rule without voltage nonlinearity. Fixed hidden:
Learning for hidden weights disabled. (d) Snapshots of network activity after
learning for symmetric feedback (nh = 256). Top: Spike raster of output activity.
Bottom: Histogram of the hidden unit firing rates. (e) Like panel d but for ran-
dom feedback. (f) Like panel e, with additional regularization term (see section
3). (g) Like panel d, but without voltage nonlinearity in the learning rule.
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5 Discussion

In this article, we have derived a three-factor learning rule to train deter-
ministic multilayer SNNs of LIF neurons. Moreover, we have assessed the
impact of different types of feedback credit assignment strategies for the
hidden units, notably symmetric, random, and uniform. In contrast to pre-
vious work (Pfister et al., 2006; Fremaux et al., 2010; Gardner et al., 2015),
we have used a deterministic surrogate gradient approach instead of the
commonly used stochastic gradient approximations. By combining this rule
with ideas of straight-through estimators (Hinton, 2012; Bengio et al., 2013)
and feedback alignment (Lillicrap et al., 2016; Baldi et al., 2016), we could
efficiently train and study precisely timed spiking dynamics in multilayer
networks of deterministic LIF neurons without relying on the introduction
of extraneous and unavoidable noise present in stochastic models, noise
that generally impedes the ability to learn precise spatiotemporal spike pat-
tern transformations.

The weight update equation of SuperSpike constitutes a voltage-based
nonlinear Hebbian three-factor rule with individual synaptic eligibility
traces. Each of these aspects has direct biological interpretations. For in-
stance, a nonlinear voltage dependence has been reported ubiquitously by
numerous studies on Hebbian long-term plasticity induction in hippocam-
pus and cortex (Artola, Bröcher, & Singer, 1990; Feldman, 2012). Also, the
window of temporal coincidence detection in our model is in good agree-
ment with that of STDP (Feldman, 2012). Moreover, the time course of the
eligibility traces could be interpreted as a local calcium transient at the
synaptic spine level. Finally, the multiplicative coupling of the error sig-
nal with the eligibility trace could arise from neuromodulators (Izhikevich,
2007; Pawlak, Wickens, Kirkwood, & Kerr, 2010; Frémaux & Gerstner, 2016;
Kusmierz et al., 2017). However, instead of only one global feedback signal,
our work highlights the necessity of a higher-dimensional neuromodula-
tory or electrical feedback signal for learning potentially with some knowl-
edge of the feedforward pathway. The biological exploration of such intelli-
gent neuromodulation, as well as extensions of our approach to deeper and
recurrent SNNs, are left as intriguing directions for future work.

Appendix: Analytical Motivation for the Regularization Term

The specific choice of the regularizer introduced in equation 3.5 was mo-
tivated by previous work on rapid compensatory processes as an effective
way to constrain neuronal activity through linear scaling of afferent weights
(Oja, 1982; Zenke et al., 2015).

To better understand the action of this regularization term, consider a
constant nonzero error signal ei(t) = ei and stationary presynaptic input.
We now ask under which conditions the expected weight change over time
(cf. equation 2.5) vanishes:
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1
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ds = 0. (A.1)

Assuming a small learning rate and thus slow weight changes, this condi-
tion is fulfilled when the term containing the learning rule, equation 2.5,
and the regularizer (cf. equation 3.4) cancel on average
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which yields the following fixed point for the weight:
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Note that this expression corresponds to the unregularized learning
rule, equation 2.5, normalized by a factor defined by the regularization
function ζ , equation 3.5, which by definition solely depends on the post-
synaptic activity.

Assuming ζ = z4
i (see equation 3.5) and Poisson firing statistics with fir-

ing rate ν, the expectation value of the integral in the denominator can be
computed analytically (see Zenke, 2014, for a derivation) and is given by

1
T

∫ T

0
z4

i (s) ds = 1
12

ντhet(3 + 25ντhet + 36ν2τ 2
het + 12ν3τ 3

het), (A.4)

which has a fourth-order dependence on the postsynaptic firing rate. Em-
pirically, we find that this rate dependence in conjunction with ρ = 1 yields
good learning performance (see Figure 8a). However, other possible regu-
larizers with a comparable effect on hidden unit firing rates (see Figure 8b)
and performance exist (see Figure 8a).

In addition to a purely activity-dependent regularization term, we also
explored the effect of a regularization term with an explicit dependence on
the square of the error signal:

ζerr(t) = z4
i (t) e2

i (t). (A.5)

Such an error-dependence prevents a slow weight decay during phases
when ei = 0, that is, when a problem is solved perfectly. However, in the
relevant scenarios in which we applied regularization, zero error was never
achieved, and we did not observe a notable difference in performance to
equation 3.5.
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Figure 8: Effect of different variants of the regularization function ζ (cf. equa-
tion 3.5). (a) Network performance after training on the task shown in Figure 7
using random feedback (r0 = 10−3) as a function of regularization strength ρ.
The different colors correspond to different values of the exponent a (see equa-
tion 3.5). Note that without activity dependence (a = 0), the network performs
consistently worse than networks with an activity-dependent regularizer. For
activity-dependent regularizers (a > 0), there exists an optimal range for the
regularization strength ρ that minimizes the final cost. In the case of a = 0, learn-
ing became unstable at around ρ ≈ 100. Simulations with ρ > 100 and a = 0 typ-
ically resulted in a quiescent network state with strong negative synapses from
which the network did not recover. (b) Averaged hidden-layer firing rates after
learning as a function of regularization strength ρ and for different exponents a.
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