
Universality and individuality in neural dynamics
across large populations of recurrent networks

Niru Maheswaranathan∗
Google Brain, Google Inc.

Mountain View, CA
nirum@google.com

Alex H. Williams∗
Stanford University

Stanford, CA
ahwillia@stanford.edu

Matthew D. Golub
Stanford University

Stanford, CA
mgolub@stanford.edu

Surya Ganguli
Stanford University and Google Brain
Stanford, CA and Mountain View, CA

sganguli@stanford.edu

David Sussillo†
Google Brain, Google Inc.

Mountain View, CA
sussillo@google.com

Abstract

Task-based modeling with recurrent neural networks (RNNs) has emerged as a
popular way to infer the computational function of different brain regions. These
models are quantitatively assessed by comparing the low-dimensional neural rep-
resentations of the model with the brain, for example using canonical correlation
analysis (CCA). However, the nature of the detailed neurobiological inferences
one can draw from such efforts remains elusive. For example, to what extent does
training neural networks to solve common tasks uniquely determine the network
dynamics, independent of modeling architectural choices? Or alternatively, are
the learned dynamics highly sensitive to different model choices? Knowing the
answer to these questions has strong implications for whether and how we should
use task-based RNN modeling to understand brain dynamics. To address these
foundational questions, we study populations of thousands of networks, with com-
monly used RNN architectures, trained to solve neuroscientifically motivated tasks
and characterize their nonlinear dynamics. We find the geometry of the RNN
representations can be highly sensitive to different network architectures, yielding
a cautionary tale for measures of similarity that rely on representational geometry,
such as CCA. Moreover, we find that while the geometry of neural dynamics
can vary greatly across architectures, the underlying computational scaffold—the
topological structure of fixed points, transitions between them, limit cycles, and
linearized dynamics—often appears universal across all architectures.

1 Introduction

The computational neuroscience community is increasingly relying on deep learning both to directly
model large-scale neural recordings [1, 2, 3] as well to train neural networks on computational tasks
and compare the internal dynamics of such trained networks to measured neural recordings [4, 5, 6, 7,
8, 9]. For example, several recent studies have reported similarities between the internal represen-
tations of biological and artificial networks [5, 10, 11, 12, 13, 14, 15, 16]. These representational
similarities are quite striking since artificial neural networks clearly differ in many ways from their
much more biophysically complex natural counterparts. How then, should we scientifically interpret

∗Equal contribution.
†Corresponding author.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

the striking representational similarity of biological and artificial networks, despite their vast disparity
in biophysical and architectural mechanisms?

A fundamental impediment to achieving any such clear scientific interpretation lies in the fact that
infinitely many model networks may be consistent with any particular computational task or neural
recording. Indeed, many modern applications of deep learning utilize a wide variety of recurrent
neural network (RNN) architectures [17, 18, 19, 20], initialization strategies [21] and regularization
terms [22, 23]. Moreover, new architectures continually emerge through large-scale automated
searches [24, 25, 26]. This dizzying set of modelling degrees of freedom in deep learning raises
fundamental questions about how the degree of match between dynamical properties of biological
and artificial networks varies across different modelling choices used to generate RNNs.

For example, do certain properties of RNN dynamics vary widely across individual architectures?
If so, then a high degree of match between these properties measured in both an artificial RNN
and a biological circuit might yield insights into the architecture underlying the biological circuit’s
dynamics, as well as rule out other potential architectures. Alternatively, are other properties of RNN
dynamics universal across many architectural classes and other modelling degrees of freedom? If
so, such properties are interesting neural invariants determined primarily by the task, and we should
naturally expect them to recur not only across diverse classes of artificial RNNs, but also in relevant
brain circuits that solve the same task. The existence of such universal properties would then provide
a satisfying explanation of certain aspects of the match in internal representations between biological
and artificial RNNs, despite many disparities in their underlying mechanisms.

Interestingly, such universal properties can also break the vast design space of RNNs into different
universality classes, with these universal dynamical properties being constant within classes, and
varying only between classes. This offers the possibility of theoretically calculating or understanding
such universal properties by analyzing the simplest network within each universality class3. Thus
a foundational question in the theory of RNNs, as well as in their application to neuroscientific
modelling, lies in ascertaining which aspects of RNN dynamics vary across different architectural
choices, and which aspects—if any—are universal across such choices.

Theoretical clarity on the nature of individuality and universality in nonlinear RNN dynamics is
largely lacking4, with some exceptions [29, 30, 31, 32]. Therefore, with the above neuroscientific
and theoretical motivations in mind, we initiate an extensive numerical study of the variations in
RNN dynamics across thousands of RNNs with varying modelling choices. We focus on canonical
neuroscientifically motivated tasks that exemplify basic elements of neural computation, including
the storage and maintenance of multiple discrete memories, the production of oscillatory motor-like
dynamics, and contextual integration in the face of noisy evidence [33, 4].

To compare internal representations across networks, we focused on comparing the geometry of
neural dynamics using common network similarity measures such as singular vector canonical
correlation analysis (SVCCA) [34] and centered kernel alignment (CKA) [35]. We also used tools
from dynamical systems analysis to extract more topological aspects of neural dynamics, including
fixed points, limit cycles, and transition pathways between them, as well as the linearized dynamics
around fixed points [33]. We focused on these approaches because comparisons between artificial
and biological network dynamics at the level of geometry, and topology and linearized dynamics, are
often employed in computational neuroscience.

Using these tools, we find that different RNN architectures trained on the same task exhibit both
universal and individualistic dynamical properties. In particular, we find that the geometry of neural
representations varies considerably across RNNs with different nonlinearities. We also find surprising
dissociations between dynamical similarity and functional similarity, whereby trained and untrained
architectures of a given type can be more similar to each other than trained architectures of different
types. This yields a cautionary tale for using SVCCA or CKA to compare neural geometry, as
these similarity metrics may be more sensitive to particular modeling choices than to overall task
performance. Finally, we find considerably more universality across architectures in the topological

3This situation is akin to that in equilibrium statistical mechanics in which physical materials as disparate
as water and ferromagnets have identical critical exponents at second order phase transitions, by virtue of the
fact that they fall within the same universality class [27]. Moreover, these universal critical exponents can be
computed theoretically in the simplest model within this class: the Ising model.

4Although Feigenbaum’s analysis [28] of period doubling in certain 1D maps might be viewed as an analysis
of 1D RNNs.

2

structure of fixed points, limit cycles, and specific properties of the linearized dynamics about fixed
points. Thus overall, our numerical study provides a much needed foundation for understanding
universality and individuality in network dynamics across various RNN models, a question that is
both of intrinsic theoretical interest, and of importance in neuroscientific applications.

2 Methods

2.1 Model Architectures and Training Procedure

We define an RNN by an update rule, ht = F (ht−1,xt), where F denotes some nonlinear function
of the network state vector ht−1 ∈ RN and the network input xt ∈ RM . Here, t is an integer index
denoting discrete time steps. Given an initial state, h0, and a stream of T inputs, x1, x2, . . ., xT , the
RNN states are recursively computed, h1, h2, . . ., hT . The model predictions are based on a linear
readout of these state vector representations of the input stream. We studied 4 RNN architectures, the
vanilla RNN (Vanilla), the Update-Gate RNN (UGRNN; [20]), the Gated Recurrent Unit (GRU; [18]),
and the Long-Short-Term-Memory (LSTM; [17]). The equations for these RNNs can be found in
Appendix A. For each RNN architecture we modified the (non-gate) point-wise activation function to
be either rectified linear (relu) or hyperbolic tangent (tanh). The point-wise activation for the gating
units is kept as a sigmoid.

We trained networks for every combination of the following parameters: RNN architecture (Vanilla,
UGRNN, LSTM, GRU), activation (relu, tanh), number of units/neurons (64, 128, 256), and L2
regularization (1e-5, 1e-4, 1e-3, 1e-2). This yielded 4×2×3×4 = 96 unique configurations. For each
one of these configurations, we performed a separate random hyperparameter search over gradient
clipping values [22] (logarithmically spaced from 0.1 to 10) and the learning rate schedule parameters.
The learning rate schedule is an exponentially decaying schedule parameterized by the initial rate
(with search range from 1e-5 to 0.1), decay rate (0.1 to 0.9), and momentum (0 to 1). All networks
were trained using stochastic gradient descent with momentum [36, 37] for 20,000 iterations with
a batch size of 64. For each network configuration, we selected the best hyperparameters using a
validation set. We additionally trained each of these configurations with 30 random seeds, yielding
2,880 total networks for analysis for each task. All networks achieve low error; histograms of the
final loss values achieved by all networks are available in Appendix C.

2.2 Tasks

We used three canonical tasks that have been previously studied in the neuroscience literature:

K-bit flip-flop Following [33], RNNs were provided K inputs taking discrete values in
{−1, 0,+1}. The RNN has K outputs, each of which is trained to remember the last non-zero
input on its corresponding input. Here we set K = 3, so e.g. output 2 remembers the last non-zero
state of input 2 (+1 or -1), but ignores inputs 1 and 3. We set the number of time steps, T , to 100, and
the flip probability (the probability of any input flipping on a particular time step) to 5%.

Frequency-cued sine wave Following [33], RNNs received a static input, x ∼ Uniform(0, 1), and
were trained to produce a unit amplitude sine wave, sin(2πωt), whose frequency is proportional to
the input: ω = 0.04x+ 0.01. We set T = 500 and dt = 0.01 (5 simulated seconds total).

Context-dependent integration (CDI) Following previous work [4], RNNs were provided with
K static context inputs and K time-varying white noise input streams. On each trial, all but one
context input was zero, thus forming a one-hot encoding indicating which noisy input stream of
length T should be integrated. The white noise input was sampled from N (µ, 1) at each time step,
with µ sampled uniformly between -1 and 1 and kept static across time for each trial. RNNs were
trained to report the cumulative sum of the cued white-noise input stream across time. Here, we set
K = 2 and T = 30.

3

2.3 Assessing model similarity

The central questions we examined were: how similar are the representations and dynamics of
different RNNs trained on the same task? To address this, we use approaches that highlight different
but sometimes overlapping aspects of RNN function:

SVCCA and CKA to assess representational geometry We quantified similarity at the level of
representational geometry [38]. In essence, this means quantifying whether the responses of two
RNNs to the same inputs are well-aligned by some kind of linear transformation.

We focused on singular vector canonical correlations analysis (SVCCA; [34]), which has found
traction in both neuroscience [12] and machine learning communities [39, 15]. SVCCA compares
representations in two steps. First, each representation is projected onto their top principal components
to remove the effect of noisy (low variance) directions. Typically, the number of components is
chosen to retain ~95% of the variance in the representation. Then, canonical correlation analysis
(CCA) is performed to find a linear transformation that maximally correlates the two representations.
This yields R correlation coefficients, 1 ≥ ρ1 ≥ . . . ≥ ρR ≥ 0, providing a means to compare the
two datasets, typically by averaging or summing the coefficients (see Appendix D for further details).

In addition to SVCCA, we explored a related metric, centered kernel alignment (CKA; [35]). CKA
is related to SVCCA in that it also suppresses low variance directions, however CKA weights the
components proportional to the singular value (as opposed to removing some completely). We
found that using SVCCA and CKA yielded similar results for the purposes of determining whether
representations cluster by architecture or activation function so we present SVCCA results in the
main text but provide a comparison with CKA in Appendix E.

Fixed point topology to assess computation An alternative perspective to representational geom-
etry for understanding computation in RNNs is dynamics. We studied RNN dynamics by reducing
their nonlinear dynamics to linear approximations. Briefly, this approach starts by optimizing to find
the fixed points {h∗1,h∗2, ...} of an RNN such that h∗i ≈ F (h∗i ,x

∗). We use the term fixed point to
also include approximate fixed points, which are not truly fixed but are nevertheless very slow on the
time scale of the task.

We set the input (x∗) to be static when finding fixed points. These inputs can be thought of as
specifying different task conditions. In particular, the static command frequency in the sine wave task
and the hot-one context signal in the CDI task are examples of such condition specifying inputs. Note
however, that dimensions of x that are time-varying are set to 0 in x∗. In particular, the dimensions
of the input that represent the input pulses in the 3-bit memory task and the white noise input streams
in the CDI task are set to 0 in x∗.

Numerical procedures for identifying fixed points are discussed in [33, 40]. Around each fixed point,
the local behavior of the system can be approximated by a reduced system with linear dynamics:

ht ≈ h∗ + J(h∗,x∗) (ht−1 − h∗) ,

where Jij(h
∗,x∗) = ∂Fi(h

∗,x∗)
∂h∗

j
denotes the Jacobian of the RNN update rule. We studied these

linearized systems using the eigenvector decomposition for non-normal matrices (see Appendix B
for the eigenvector decomposition). In this analysis, both the topology of the fixed points and the
linearizations around those fixed points become objects of interest.

Visualizing similarity with multi-dimensional scaling For each analysis, we computed network
similarity between all pairs of network configurations for a given task, yielding a large (dis-)similarity
matrix for each task (for example, we show this distance matrix for the flip-flop task in Fig. 1c). To
visualize the structure in these matrices, we used multi-dimensional scaling (MDS) [41] to generate
a 2D projection which we used for visualization (Fig. 1d and f, Fig. 2c and e, Fig. 3c and d). For
visualization purposes, we separate plots colored by RNN architecture (for a fixed nonlinearity, tanh)
and nonlinearity (for a fixed architecture, Vanilla).

3 Results

The major contributions in this paper are as follows. First, we carefully train and tune large populations
of RNNs trained on several canonical tasks relating to discrete memory [33], pattern generation [33],

4

(a) Flip-flop task schematic

graph representationPCA trajectories
(f) Network similarity using
fixed point topology MDS

tanh

relu

UGRNN

VanillaGRU

LSTM

(d) Network similarity using SVCCA MDS

(b) PCA Trajectories

PC #1PC #2

PC #3

(c) SVCCA Distances

(e) Fixed point topology

Figure 1: 3-bit discrete memory. a) Inputs (black) of -1 or 1 come in at random times while the corresponding
output (dashed red) has to remember the last non-zero state of the input (either +1 or -1). b) Example PCA
trajectories of dynamics for an example architecture and activation function. c) Dynamics across networks
are compared via SVCCA and given a distance (one minus the average correlation coefficient), yielding a
network-network distance matrix. d) This distance matrix is used to create a 2D embedding via multidimensional
scaling (MDS) of all networks, showing clustering based on RNN architecture (left) and activation function
(right). e) Topological analysis of a network using fixed points. First, the fixed points of a network’s dynamics
are found, and their linear stability is assessed (left, black dots - stable fixed points, red - one unstable dimension,
green - 2 unstable dimensions, blue - 3 unstable dimensions. By studying heteroclinic and homoclinic orbits, the
fixed point structure is translated to a graph representation (right). f) This graph representation is then compared
across networks, creating another network-network distance matrix. The distance matrix is used to embed the
network comparisons into 2D space using MDS, showing that the topological representation of a network using
fixed point structure is more similar across architectures (left) and activation functions (right) than the geometry
of the network is (layout as in 1d).

and analog memory and integration [4]. Then, we show that representational geometry is sensitive
to model architecture (Figs. 1-3). Next, we show all RNN architectures, including complex, gated
architectures (e.g. LSTM and GRU) converge to qualitatively similar dynamical solutions, as
quantified by the topology of fixed points and corresponding linearized dynamics (Figs. 1-3). Finally,
we highlight a case where SVCCA is not necessarily indicative of functional similarity (Fig. 4).

3.1 3-bit discrete memory

We trained RNNs to store and report three discrete binary inputs (Fig. 1a). In Fig. 1b, we use a simple
“probe input” consisting of a series of random inputs to highlight the network structure. Across all
network architectures the resulting trajectories roughly trace out the corners of a three-dimensional
cube. While these example trajectories look qualitatively similar across architectures, SVCCA
revealed systematic differences. This is visible in the raw SVCCA distance matrix (Fig. 1c), as well
as in low-dimensional linear embeddings achieved by applying multi-dimensional scaling (MDS)
(Fig. 1d) created using the SVCCA distance matrix.

To study the dynamics of these networks, we ran an optimization procedure [40] to numerically
identify fixed points for each trained network (see Methods). A representative network is shown in
Fig. 1e (left). The network solves the task by encoding all 23 possible outputs as 8 stable fixed points.
Furthermore, there are saddle points with one, two, or three unstable dimensions (see caption), which
route the network activity towards the appropriate stable fixed point for a given input.

We devised an automated procedure to quantify the computational logic of the fixed point structure
in Fig. 1e that effectively ignored the precise details in the transient dynamics and overall geometry
of the 3D cube evident in the PCA trajectories. Specifically, we distilled the dynamical trajectories
into a directed graph, with nodes representing fixed points, and weighted edges representing the
probability of moving from one fixed point to another when starting the initial state a small distance

5

(b) Example PCA trajectories

ta
nh

re
lu

Vanilla UGRNNGRU

PC
#1

PC
#3

PC #2

LSTM

(c) Network similarity via SVCCA MDS

(e) Network similarity via fixed point topology MDS

(d) Fixed point linearization analysis (example network)

(f) Linearization summary

1

3

5
In
pu
tf
re
qu
en
cy

(H
z)

(a) Sine wave task schematic

Time (s)

Ta
rg
et
s

UGRNN

VanillaGRU

LSTM

tanh

relu

UGRNN
Vanilla
GRU
LSTM

tanhrelu

1 3 5
1

3

5

LSTM
UGRNN

GRU
Vanilla

1 3 5

tanh
relu

Input freq., ω (Hz)

In
pu

tf
re
qu

en
cy
,ω

(H
z)

Li
ne
ar

fre
q.

(H
z)

0.0 0.5 1.0
()

0.5

0.0

0.5

(
)

Figure 2: Sine wave generation. a) Schematic showing conversion of static input specifying a command
frequency, ω, for the sine wave output sin(2πωt). b) PCA plots showing trajectories using many evenly divided
command frequencies delivered one at a time (blue: smallest ω, yellow: largest ω). c) MDS plots based on
SVCCA network-network distances, layout as in Fig. 1d. d) Left, fixed points (colored circles, with color
indicating ω, one fixed point per command frequency) showing a single fixed point in the middle of each
oscillatory trajectory. Right, the complex eigenvalues of all the linearized systems, one per fixed point, overlayed
on top of each other, with primary oscillatory eigenvalues colored as in panel b. e) MDS network-network
distances based on fixed point topology, assessing systematic differences in the topology of the input-dependent
fixed points (layout as in Fig. 1d). f) Summary analysis showing the frequency of the oscillatory mode in the
linearized system vs. command frequency for different architectures (left) and activations (right). Solid line and
shaded patch show the mean ± standard error over networks trained with different random seeds. Small, though
systematic, variations exist in the frequency of each oscillatory mode.

away from the first fixed point. We did this 100 times for each fixed point, yielding a probability
of transitioning from one fixed point to another. As expected, stable fixed points have no outgoing
edges, and only have a self-loop. All unstable fixed points had two or more outgoing edges, which are
directed at nearby stable fixed points. We constructed a fixed point graph for each network and used
the Euclidean distance between the graph connectivity matrices to quantify dis-similarity5. These
heteroclinic orbits are shown in Fig. 1e, light black trajectories from one fixed point to another. Using
this topological measure of RNN similarity, we find that all architectures converge to very similar
solutions as shown by an MDS embedding of the fixed point graph (Fig. 1f).

3.2 Sine wave generation

We trained RNNs to convert a static input into a sine wave, e.g. convert the command frequency ω
to sin(2πωt) (Fig. 2a). Fig. 2b shows low-dimensional trajectories in trained networks across all
architectures and nonlinearities (LSTM with ReLU did not train effectively, so we excluded it). Each

5While determining whether two graphs are isomorphic is a challenging problem in general, we circumvented
this issue by lexographically ordering the fixed points based on the RNN readout. Networks with different
numbers of fixed points than the modal number were discarded (less than 10% of the population).

6

trajectory is colored by the input frequency. Furthermore, all trajectories followed a similar pattern:
oscillations occur in a roughly 2D subspace (circular trajectories), with separate circles for each
frequency input separated by a third dimension. We then performed an analogous series of analyses
to those used in the previous task. In particular, we computed the SVCCA distances (raw distances
not shown) and used those to create an embedding of the network activity (Fig. 2c) as a function of
either RNN architecture or activation. These SVCCA MDS summaries show systematic differences
in the representations across both architecture and activation.

Moving to the analysis of dynamics, we found for each input frequency a single input-dependent
fixed point (Fig. 2d, left). We studied the linearized dynamics around each fixed point and found a
single pair of imaginary eigenvalues, representing a mildly unstable oscillatory mode whose complex
angle aligned well with the input frequency (Fig. 2d, right). We compared the frequency of the linear
model to the input frequency and found generally good alignment. We averaged the linear frequency
across all networks within architecture or activation and found small, but systematic differences
(Fig. 2f). Embeddings of the topological structure of the input-dependent fixed points did not reveal
any structure that systematically varied by architecture or activation (Fig. 2e).

3.3 Context-dependent integration (analog memory)

We trained an RNN to contextually integrate one of two white noise input streams, while ignoring
the other (Fig. 3a). We then studied the network representations by delivering a set of probe inputs
(Fig. 3a). The 3D PCA plots are shown in Fig. 3b, showing obvious differences in representational
geometry as a function of architecture and activation. The MDS summary plot of the SVCCA
distances of the representations is shown in Fig. 3c, again showing systematic clustering as a function
of architecture (left) and activation (right). We also analyzed the topology of the fixed points (black
dots in Fig. 3b) to assess how well the fixed points approximated a line attractor. We quantified this
by generating a graph with edges between fixed points that were nearest neighbors. This resulted in a
graph for each line attractor in each context, which we then compared using Euclidean distance and
embedded in a 2D space using MDS (Fig. 3d). The MDS summary plot did not cluster strongly by
architecture, but did cluster based on activation.

We then studied the linearized dynamics around each fixed point (Fig. 3e,f). We focused on a single
context, and studied how a unit magnitude relevant input (as opposed to the input that should be
contextually ignored) was integrated by the linear system around the nearest fixed point. This was
previously studied in depth in [4]. Here we were interested in differences in integration strategy as a
function of architecture. We found similar results to [4] for the vanilla RNN, which integrated the
input using a single linear mode with an eigenvalue of 1, with input coming in on the associated
left eigenvector and represented on the associated right eigenvector. Examination of all linearized
dynamics averaged over all fixed points within the context showed that different architectures had
a similar strategy, except that the gated architectures had many more eigenvalues near 1 (Fig. 3e)
and thus used a high-dimensional strategy to accomplish the same goal as the vanilla RNN does in 1
dimension. We further studied the dimensionality by systematically zeroing out eigenvalues from
smallest to largest to discover how many linear modes were necessary to integrate a unit magnitude
input, compared to the full linear approximation (Fig. 3f). These results show that all of the networks
and architectures use essentially the same integration strategy, but systematically vary by architecture
in terms of the number of modes they employ. To a lesser degree they also vary some in the amount
the higher order terms contribute to the solution, as shown by the differences away from an integral
of 1 for a unit magnitude input, for the full linearized system with no modes zeroed out (analogous to
Fig. 2f).

Finally, to highlight the difficulty of using CCA-based techniques to compare representational
geometry in simple tasks, we used the inputs of the context-dependent integrator task to drive both
trained and untrained vanilla RNNs (Fig. 4). We found that the average canonical correlation between
trained and untrained networks can be larger than between trained RNNs with different nonlinearities.
The summary MDS plot across many RNNs shows that the two clusters of untrained and trained relu
networks are closer together than the two clusters of trained tanh networks Fig. 4b.

7

UGRNN

Vanilla

GRULSTM tanh
relu UGRNN

Vanilla
GRU
LSTM

tanh

relu

(a) Context dependent integration task

Context
(red or blue)

Probe (single context)

(b) Example PCA trajectories (single context)

(c) Network similarity using SVCCA MDS (d) Network similarity using fixed point topology MDS

ta
nh

Vanilla UGRNNGRU LSTM

re
lu

Context Signal
Inputs Outputs

(a) (c) Linear projections of CCA similarities(b)
tanh ReLU

U
nt
ra
in
ed

Tr
ai
ne
d

Vanilla RNNs

PCA projections of RNN activity

untrained
ReLU

trained
ReLU

untrained
tanh

trained
tanh

tanh RNNs (trained)

Vanilla

LSTM
GRU

UGRNN

PC 1
PC 2

Probe inputs for RNN integration task.

0.72

0.81 0.80

1 128
0

1

Vanilla
LSTM
GRU
UGRNN

PC #1
PC #2

1 128
0

1

Vanilla
GRU

UGRNN
LSTM

1 128

tanh
relu

|λ|

Eigenmode

(e) Average eigenvalue magnitude

Number of kept eigenmodes

(f) Linearized predictions for a unit input

Figure 3: Context-Dependent Integration. a) One of two streams of white-noise input (blue or red) is contextually
selected by a one-hot static context input to be integrated as output of the network, while the other is ignored
(blue or red). b) The trained networks were studied with probe inputs (panel inset in a), probes from blue to
red show probe input). For this and subsequent panels, only one context is shown for clarity. Shown in b are
the PCA plots of RNN hidden states when driven by probe inputs (blue to red). The fixed points (black dots)
show approximate line attractors for all RNN architectures and nonlinearities. c) MDS embedding of SVCCA
network-network distances comparing representations based on architecture (left) and activation (right), layout
as in Fig. 1d. d) Using the same method to assess the topology of the fixed points as used in the sine-wave
example to study the topology of the input-dependent fixed points, we embedded the network-network distances
using the topological structure of the line attractor (colored based on architectures (left) and activation (right),
layout as in Fig. 1d). e) Average sorted eigenvalues as a function architecture. Solid line and shaded patch show
mean ± standard error over networks trained with different random seeds. f) Output of the network when probed
with a unit magnitude input using the linearized dynamics, averaged over all fixed points on the line attractor,
as a function of architecture and number of linear modes retained. In order to study the the dimensionality of
the solution to integration, we systematically removed the modes with smallest eigenvalues one at a time, and
recomputed the prediction of the new linear system for the unit magnitude input. These plots indicate that the
vanilla RNN (blue) uses a single mode to perform the integration, while the gated architectures distribute this
across a larger number of linear modes.

4 Related Work

Researchers are beginning to study both empirically and theoretically how deep networks may show
universal properties. For example, [32] proved that representational geometry is a universal property
amongst all trained deep linear networks that solve a task optimally, with smallest norm weights.
Also, [42, 43] studied how expressive capacity increases with network depth and width. Work in
RNNs is far more preliminary, though it is well known that RNNs are universal approximators
of dynamical systems [44]. More recently, the per-parameter capacity of RNNs was found to be
remarkably similar across various RNN architectures [20]. The authors of [45] studied all the possible
topological arrangements of fixed points in a 2D continuous-time GRU, conjecturing that dynamical
configurations such as line or ring attractors that require an infinite number of fixed points can only
be created in approximation, even in GRUs with more than two dimensions.

8

(a)
tanh ReLU

U
nt
ra
in
ed

Tr
ai
ne
d

PC 1
PC 2

0.72

0.81 0.80

Vanilla RNNs

untrained
ReLU

trained
ReLU

untrained
tanh

trained
tanh

(b)

PC #1
PC #2

Figure 4: An example where SVCCA yields a stronger correlation between untrained networks and trained
networks than between trained networks with different nonlinearities. a) An example (single context shown)
of the representation of the probe inputs (blue through red) for four networks: two trained, and two untrained
with tanh and ReLU nonlinearities. In this case the untrained tanh and ReLU networks have a higher correlation
to the trained tanh network than the trained tanh network does to the trained ReLU network. b) MDS plot
of SVCCA-based distances for many trained and untrained networks, showing that trained and untrained relu
networks are more similar to each other on average than to tanh networks.

Understanding biological neural systems in terms of artificial dynamical systems has a rich tradition
[46, 47, 48, 49]. Researchers have attempted to understand optimized neural networks with nonlinear
dynamical systems techniques [33, 50] and to compare those artificial networks to biological circuits
[4, 12, 51, 52, 53, 13, 14].

Previous work has studied vanilla RNNs in similar settings [33, 4, 54], but has not systematically
surveyed the variability in network dynamics across commonly used RNN architectures, such as
LSTMs [17] or GRUs [18], nor quantified variations in dynamical solutions over architecture and
nonlinearity, although [16] considers many issues concerning how RNNs may hold memory. Finally,
there has been a recent line of work comparing artificial network representations to neural data [1, 2,
3, 10, 11, 12]. Investigators have been studying ways to improve the utility of CCA-based comparison
methods [34, 55], as well as comparing CCA to other methods [35].

5 Discussion

In this work we empirically study aspects of individuality and universality in recurrent networks.
We find individuality in that representational geometry of RNNs varies significantly as a function
of architecture and activation function (Fig. 1d, 2c, 3c). We also see hints of universality: the fixed
point topologies show far less variation across networks than the representations do (Fig. 1f, 2e, 3d).
Linear analyses also showed similar solutions, e.g. essentially linear oscillations for the sine wave
task (Fig. 2f) and linear integration in the CDI task (Fig. 3f). However, linear analyses also showed
variation across architectures in the dimensionality of the solution to integration (Fig. 3e).

While the linear analyses showed common computational strategies across all architectures (such
as a slightly unstable oscillation in the linearized system around each fixed point), we did see small
systematic differences that clustered by architecture (such as the difference between input frequency
and frequency of oscillatory mode in the linearized system). This indicates that another aspect of
individuality appears to be the degree to which higher order terms contribute to the total solution.

The fixed point analysis discussed here has one major limitation, namely that the number of fixed
points must be the same across networks that are being compared. For the three tasks studied here,
we found that the vast majority of trained networks did indeed have the same number of fixed points
for each task. However, an important direction for future work is extending the analysis to be more
robust with respect to differing numbers of fixed points.

In summary, we hope this empirical study begins a larger effort to characterize methods for comparing
RNN dynamics, building a foundation for future connections of biological circuits and artificial
neural networks.

9

Acknowledgments

The authors would like to thank Jeffrey Pennington, Maithra Raghu, Jascha Sohl-Dickstein, and Larry
Abbott for helpful feedback and discussions. MDG was supported by the Stanford Neurosciences
Institute, the Office of Naval Research Grant #N00014-18-1-2158.

References

[1] Lane McIntosh, Niru Maheswaranathan, Aran Nayebi, Surya Ganguli, and Stephen Baccus.
“Deep Learning Models of the Retinal Response to Natural Scenes”. In: Advances in Neural
Information Processing Systems 29. Ed. by D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon,
and R. Garnett. Curran Associates, Inc., 2016, pp. 1369–1377. URL: http://papers.nips.
cc/paper/6388-deep-learning-models-of-the-retinal-response-to-natural-
scenes.pdf.

[2] Niru Maheswaranathan, Lane T McIntosh, David B Kastner, Josh Melander, Luke Brezovec,
Aran Nayebi, Julia Wang, Surya Ganguli, and Stephen A Baccus. “Deep learning models reveal
internal structure and diverse computations in the retina under natural scenes”. In: bioRxiv
(2018), p. 340943.

[3] Chethan Pandarinath, Daniel J O’Shea, Jasmine Collins, Rafal Jozefowicz, Sergey D Stavisky,
Jonathan C Kao, Eric M Trautmann, Matthew T Kaufman, Stephen I Ryu, Leigh R Hochberg,
Jaimie M Henderson, Krishna V Shenoy, L F Abbott, and David Sussillo. “Inferring single-
trial neural population dynamics using sequential auto-encoders”. In: Nature Methods 15.10
(2018), pp. 805–815. ISSN: 1548-7105. DOI: 10.1038/s41592-018-0109-9. URL: https:
//doi.org/10.1038/s41592-018-0109-9.

[4] Valerio Mante, David Sussillo, Krishna V. Shenoy, and William T. Newsome. “Context-
dependent computation by recurrent dynamics in prefrontal cortex”. In: Nature 503 (2013).
Article, p. 78.

[5] Alexander J E Kell, Daniel L K Yamins, Erica N Shook, Sam V Norman-Haignere, and Josh
H McDermott. “A Task-Optimized Neural Network Replicates Human Auditory Behavior,
Predicts Brain Responses, and Reveals a Cortical Processing Hierarchy”. In: Neuron 98.3
(May 2018), 630–644.e16. ISSN: 0896-6273. DOI: 10.1016/j.neuron.2018.03.044. URL:
https://doi.org/10.1016/j.neuron.2018.03.044.

[6] Rishi Rajalingham, Elias B. Issa, Pouya Bashivan, Kohitij Kar, Kailyn Schmidt, and James J.
DiCarlo. “Large-Scale, High-Resolution Comparison of the Core Visual Object Recognition
Behavior of Humans, Monkeys, and State-of-the-Art Deep Artificial Neural Networks”. In:
Journal of Neuroscience 38.33 (2018), pp. 7255–7269. ISSN: 0270-6474. DOI: 10.1523/
JNEUROSCI.0388-18.2018. eprint: http://www.jneurosci.org/content/38/33/
7255.full.pdf. URL: http://www.jneurosci.org/content/38/33/7255.

[7] Christopher J Cueva and Xue-Xin Wei. “Emergence of grid-like representations by training
recurrent neural networks to perform spatial localization”. In: arXiv preprint arXiv:1803.07770
(2018).

[8] Andrea Banino, Caswell Barry, Benigno Uria, Charles Blundell, Timothy Lillicrap, Piotr
Mirowski, Alexander Pritzel, Martin J Chadwick, Thomas Degris, Joseph Modayil, et al.
“Vector-based navigation using grid-like representations in artificial agents”. In: Nature
557.7705 (2018), p. 429.

[9] Stefano Recanatesi, Matthew Farrell, Guillaume Lajoie, Sophie Deneve, Mattia Rigotti, and
Eric Shea-Brown. “Predictive learning extracts latent space representations from sensory
observations”. In: bioRxiv (2019). DOI: 10.1101/471987. eprint: https://www.biorxiv.
org/content/early/2019/07/13/471987.full.pdf. URL: https://www.biorxiv.
org/content/early/2019/07/13/471987.

[10] Daniel L. K. Yamins, Ha Hong, Charles F. Cadieu, Ethan A. Solomon, Darren Seibert, and
James J. DiCarlo. “Performance-optimized hierarchical models predict neural responses in
higher visual cortex”. In: Proceedings of the National Academy of Sciences 111.23 (2014),
pp. 8619–8624. ISSN: 0027-8424. DOI: 10.1073/pnas.1403112111.

10

http://papers.nips.cc/paper/6388-deep-learning-models-of-the-retinal-response-to-natural-scenes.pdf
http://papers.nips.cc/paper/6388-deep-learning-models-of-the-retinal-response-to-natural-scenes.pdf
http://papers.nips.cc/paper/6388-deep-learning-models-of-the-retinal-response-to-natural-scenes.pdf
https://doi.org/10.1038/s41592-018-0109-9
https://doi.org/10.1038/s41592-018-0109-9
https://doi.org/10.1038/s41592-018-0109-9
https://doi.org/10.1016/j.neuron.2018.03.044
https://doi.org/10.1016/j.neuron.2018.03.044
https://doi.org/10.1523/JNEUROSCI.0388-18.2018
https://doi.org/10.1523/JNEUROSCI.0388-18.2018
http://www.jneurosci.org/content/38/33/7255.full.pdf
http://www.jneurosci.org/content/38/33/7255.full.pdf
http://www.jneurosci.org/content/38/33/7255
https://doi.org/10.1101/471987
https://www.biorxiv.org/content/early/2019/07/13/471987.full.pdf
https://www.biorxiv.org/content/early/2019/07/13/471987.full.pdf
https://www.biorxiv.org/content/early/2019/07/13/471987
https://www.biorxiv.org/content/early/2019/07/13/471987
https://doi.org/10.1073/pnas.1403112111

[11] Seyed-Mahdi Khaligh-Razavi and Nikolaus Kriegeskorte. “Deep Supervised, but Not Unsu-
pervised, Models May Explain IT Cortical Representation”. In: PLOS Computational Biology
10.11 (Nov. 2014), pp. 1–29. DOI: 10 . 1371 / journal . pcbi . 1003915. URL: https :
//doi.org/10.1371/journal.pcbi.1003915.

[12] David Sussillo, Mark M Churchland, Matthew T Kaufman, and Krishna V Shenoy. “A neural
network that finds a naturalistic solution for the production of muscle activity”. In: Nature
neuroscience 18.7 (2015), p. 1025.

[13] Evan D Remington, Devika Narain, Eghbal A Hosseini, and Mehrdad Jazayeri. “Flexible
Sensorimotor Computations through Rapid Reconfiguration of Cortical Dynamics”. In: Neuron
98.5 (2018), 1005–1019.e5. ISSN: 0896-6273. DOI: 10.1016/j.neuron.2018.05.020.

[14] Jing Wang, Devika Narain, Eghbal A Hosseini, and Mehrdad Jazayeri. “Flexible timing by
temporal scaling of cortical responses”. In: Nature neuroscience 21.1 (2018), p. 102.

[15] David GT Barrett, Ari S Morcos, and Jakob H Macke. “Analyzing biological and artificial neu-
ral networks: challenges with opportunities for synergy?” In: Current Opinion in Neurobiology
55 (2019). Machine Learning, Big Data, and Neuroscience, pp. 55–64. ISSN: 0959-4388.

[16] A Emin Orhan and Wei Ji Ma. “A diverse range of factors affect the nature of neural represen-
tations underlying short-term memory”. In: Nature Neuroscience 22.2 (2019), pp. 275–283.
ISSN: 1546-1726. DOI: 10.1038/s41593-018-0314-y. URL: https://doi.org/10.
1038/s41593-018-0314-y.

[17] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory”. In: Neural computation
9.8 (1997), pp. 1735–1780.

[18] Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Fethi Bougares, Holger Schwenk,
and Yoshua Bengio. “Learning Phrase Representations using RNN Encoder-Decoder for
Statistical Machine Translation”. In: Proc. Conference on Empirical Methods in Natural
Language Processing. Unknown, Unknown Region, 2014.

[19] Scott Wisdom, Thomas Powers, John Hershey, Jonathan Le Roux, and Les Atlas. “Full-
Capacity Unitary Recurrent Neural Networks”. In: Advances in Neural Information Processing
Systems 29. Ed. by D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett. 2016,
pp. 4880–4888.

[20] Jasmine Collins, Jascha Sohl-Dickstein, and David Sussillo. “Capacity and Trainability in
Recurrent Neural Networks”. In: ICLR. 2017.

[21] Quoc V. Le, Navdeep Jaitly, and Geoffrey E. Hinton. A Simple Way to Initialize Recurrent
Networks of Rectified Linear Units. 2015. eprint: arXiv:1504.00941.

[22] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. “On the Difficulty of Training Recurrent
Neural Networks”. In: Proceedings of the 30th International Conference on International
Conference on Machine Learning - Volume 28. ICML’13. Atlanta, GA, USA, 2013, pp. III-
1310–III-1318.

[23] Stephen Merity, Nitish Shirish Keskar, and Richard Socher. “Regularizing and Optimizing
LSTM Language Models”. In: ICLR. 2018.

[24] Barret Zoph and Quoc V. Le. “Neural Architecture Search with Reinforcement Learning”. In:
2017.

[25] Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V. Le, and Jeff Dean. “Efficient Neural
Architecture Search via Parameter Sharing”. In: ICML. 2018.

[26] Liang-chieh Chen, Maxwell Collins, Yukun Zhu, George Papandreou, Barret Zoph, Florian
Schroff, Hartwig Adam, and Jonathon Shlens. “Searching for Efficient Multi-Scale Architec-
tures for Dense Image Prediction”. In: 2018. URL: https://arxiv.org/pdf/1809.04184.
pdf.

[27] Harry Eugene Stanley. Introduction to Phase Transitions and Critical Phenomena. en. Oxford
University Press, 1971.

[28] Mitchell J Feigenbaum. “Universal behavior in nonlinear systems”. In: Universality in Chaos,
2nd edition. Routledge, 2017, pp. 49–50.

[29] Alexander Rivkind and Omri Barak. “Local dynamics in trained recurrent neural networks”.
In: Physical review letters 118.25 (2017), p. 258101.

[30] Francesca Mastrogiuseppe and Srdjan Ostojic. “Linking connectivity, dynamics, and computa-
tions in low-rank recurrent neural networks”. In: Neuron 99.3 (2018), pp. 609–623.

11

https://doi.org/10.1371/journal.pcbi.1003915
https://doi.org/10.1371/journal.pcbi.1003915
https://doi.org/10.1371/journal.pcbi.1003915
https://doi.org/10.1016/j.neuron.2018.05.020
https://doi.org/10.1038/s41593-018-0314-y
https://doi.org/10.1038/s41593-018-0314-y
https://doi.org/10.1038/s41593-018-0314-y
arXiv:1504.00941
https://arxiv.org/pdf/1809.04184.pdf
https://arxiv.org/pdf/1809.04184.pdf

[31] Francesca Mastrogiuseppe and Srdjan Ostojic. “A Geometrical Analysis of Global Stability in
Trained Feedback Networks”. In: Neural computation 31.6 (2019), pp. 1139–1182.

[32] Andrew M Saxe, James L McClelland, and Surya Ganguli. “A mathematical theory of semantic
development in deep neural networks”. In: Proc. Natl. Acad. Sci. U. S. A. (May 2019).

[33] David Sussillo and Omri Barak. “Opening the Black Box: Low-Dimensional Dynamics in
High-Dimensional Recurrent Neural Networks”. In: Neural Computation 25.3 (2013), pp. 626–
649. DOI: 10.1162/NECO_a_00409.

[34] Maithra Raghu, Justin Gilmer, Jason Yosinski, and Jascha Sohl-Dickstein. “SVCCA: Singular
Vector Canonical Correlation Analysis for Deep Learning Dynamics and Interpretability”.
In: Advances in Neural Information Processing Systems 30. Ed. by I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett. Curran Associates, Inc.,
2017, pp. 6076–6085.

[35] Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. “Similarity of
Neural Network Representations Revisited”. In: arXiv preprint arXiv:1905.00414 (2019).

[36] Boris T Polyak. “Some methods of speeding up the convergence of iteration methods”. In:
USSR Computational Mathematics and Mathematical Physics 4.5 (1964), pp. 1–17.

[37] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. “On the importance of
initialization and momentum in deep learning”. In: International conference on machine
learning. 2013, pp. 1139–1147.

[38] Nikolaus Kriegeskorte and Rogier A. Kievit. “Representational geometry: integrating cognition,
computation, and the brain”. In: Trends in Cognitive Sciences 17.8 (2013), pp. 401–412. ISSN:
1364-6613.

[39] Saskia E. J. de Vries, Jerome Lecoq, Michael A. Buice, Peter A. Groblewski, Gabriel K. Ocker,
Michael Oliver, David Feng, Nicholas Cain, Peter Ledochowitsch, Daniel Millman, et al. “A
large-scale, standardized physiological survey reveals higher order coding throughout the
mouse visual cortex”. In: bioRxiv (2018). DOI: 10.1101/359513.

[40] Matthew Golub and David Sussillo. “FixedPointFinder: A Tensorflow toolbox for identifying
and characterizing fixed points in recurrent neural networks”. In: Journal of Open Source
Software 3.31 (Nov. 2018), p. 1003. DOI: 10.21105/joss.01003. URL: https://doi.
org/10.21105/joss.01003.

[41] Ingwer Borg and Patrick Groenen. “Modern multidimensional scaling: Theory and applica-
tions”. In: Journal of Educational Measurement 40.3 (2003), pp. 277–280.

[42] Ben Poole, Subhaneil Lahiri, Maithra Raghu, Jascha Sohl-Dickstein, and Surya Ganguli.
“Exponential expressivity in deep neural networks through transient chaos”. In: Advances in
neural information processing systems. 2016, pp. 3360–3368.

[43] Maithra Raghu, Ben Poole, Jon Kleinberg, Surya Ganguli, and Jascha Sohl Dickstein. “On
the expressive power of deep neural networks”. In: Proceedings of the 34th International
Conference on Machine Learning-Volume 70. JMLR. org. 2017, pp. 2847–2854.

[44] Kenji Doya. “Universality of fully connected recurrent neural networks”. In: Dept. of Biology,
UCSD, Tech. Rep (1993).

[45] Ian D. Jordan, Piotr Aleksander Sokol, and Il Memming Park. “Gated recurrent units viewed
through the lens of continuous time dynamical systems”. In: CoRR abs/1906.01005 (2019).
arXiv: 1906.01005. URL: http://arxiv.org/abs/1906.01005.

[46] Alain Destexhe and Terrence J Sejnowski. “The Wilson–Cowan model, 36 years later”. In:
Biological cybernetics 101.1 (2009), pp. 1–2.

[47] John J Hopfield. “Neural networks and physical systems with emergent collective computa-
tional abilities”. In: Proceedings of the national academy of sciences 79.8 (1982), pp. 2554–
2558.

[48] Haim Sompolinsky, Andrea Crisanti, and Hans-Jurgen Sommers. “Chaos in random neural
networks”. In: Physical review letters 61.3 (1988), p. 259.

[49] H. S. Seung. “How the brain keeps the eyes still”. In: Proceedings of the National Academy
of Sciences 93.23 (1996), pp. 13339–13344. ISSN: 0027-8424. DOI: 10.1073/pnas.93.23.
13339.

[50] Omri Barak, David Sussillo, Ranulfo Romo, Misha Tsodyks, and LF Abbott. “From fixed
points to chaos: three models of delayed discrimination”. In: Progress in neurobiology 103
(2013), pp. 214–222.

12

https://doi.org/10.1162/NECO_a_00409
https://doi.org/10.1101/359513
https://doi.org/10.21105/joss.01003
https://doi.org/10.21105/joss.01003
https://doi.org/10.21105/joss.01003
http://arxiv.org/abs/1906.01005
http://arxiv.org/abs/1906.01005
https://doi.org/10.1073/pnas.93.23.13339
https://doi.org/10.1073/pnas.93.23.13339

[51] David Sussillo. “Neural circuits as computational dynamical systems”. In: Current opinion in
neurobiology 25 (2014), pp. 156–163.

[52] Kanaka Rajan, Christopher D Harvey, and David W Tank. “Recurrent network models of
sequence generation and memory”. In: Neuron 90.1 (2016), pp. 128–142.

[53] Omri Barak. “Recurrent neural networks as versatile tools of neuroscience research”. In:
Current opinion in neurobiology 46 (2017), pp. 1–6.

[54] Guangyu Robert Yang, Madhura R Joglekar, H Francis Song, William T Newsome, and
Xiao-Jing Wang. “Task representations in neural networks trained to perform many cognitive
tasks”. In: Nature neuroscience 22.2 (2019), p. 297.

[55] Ari Morcos, Maithra Raghu, and Samy Bengio. “Insights on representational similarity in
neural networks with canonical correlation”. In: Advances in Neural Information Processing
Systems. 2018, pp. 5727–5736.

[56] Ingmar Kanitscheider and Ila Fiete. “Training recurrent networks to generate hypotheses
about how the brain solves hard navigation problems”. In: Advances in Neural Information
Processing Systems 30. Ed. by I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett. Curran Associates, Inc., 2017, pp. 4529–4538.

[57] Harold Hotelling. “Relations between two sets of variates”. In: Breakthroughs in statistics.
Springer, 1992, pp. 162–190.

13

